Supporting Information for

Three-in-One: information encryption, anti-counterfeiting and LDs-tracking of multifunctional purine derivatives

Hao-Yuan Wang ${ }^{\text {a }}$, Kang-Kang Yu ${ }^{\text {ab* }}$, Chong-Yun Tan ${ }^{\text {a }}$, Kun Lia ${ }^{\text {a }}$, Yan-Hong Liu ${ }^{\text {a }}$, Lei Shia ${ }^{a}$, Kai Lu ${ }^{\text {a }}$, Xiao-Qi Yu ${ }^{\text {a* }}$
${ }^{a}$ Key Laboratory of Green Chemistry and Technology (Ministry of Education), College of Chemistry, Sichuan University, Chengdu, 610064, China.
Email: xqyu@scu.edu.cn

${ }^{\mathrm{b}}$ Key Laboratory of Bio-resources and Eco-environment (Ministry of Education), College of Life Sciences, Sichuan University, Chengdu, 610064, China.

E-mail: kangkangyu@scu.edu.cn

Experimental Section

Reaction procedures ${ }^{1,2}$

Scheme S1. The synthetic routes for CPPC, CHPC, CPP and CHP
2,6-dichloro-9-hexyl-9H-purine (3)
Compound 3 was produced using the same procedure as compound 2 by changing the 1-bromopropane as 1-Bromohexane. Compound 3 was obtained as white solid in 70% yield. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta(\mathrm{TMS}, \mathrm{ppm}) 8.09(\mathrm{~s}, 1 \mathrm{H}, \mathrm{a}-\mathrm{H}), 4.22$ (t, J = 7.3 Hz, 2H, b-H), $1.86(\mathrm{~m}, 2 \mathrm{H}, \mathrm{c}-\mathrm{H}), 1.26(\mathrm{~s}, 6 \mathrm{H},(\mathrm{d}-\mathrm{f})-\mathrm{H}), 0.81(\mathrm{t}, \mathrm{J}=6.8 \mathrm{~Hz}$, $3 \mathrm{H}, \mathrm{g}-\mathrm{H}$). HRMS (ESI): m/z: Calcd for $\mathrm{C}_{11} \mathrm{H}_{15} \mathrm{C}_{12} \mathrm{~N}_{4}{ }^{+}$: $273.0674[\mathrm{M}+\mathrm{H}]^{+}$; Found: 273.0628 .

9-(4-(2-chloro-9-hexyl-9H-purin-6-yl)phenyl)-9H-carbazole (CHPC)

The synthesis and purification of CHPC were similar to that of CPPC but with Compound 2 instead of Compound 3. Compound CHPC was obtained as a yellowish solid in 70% yield. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): δ (TMS, ppm) $9.03(\mathrm{~d}, \mathrm{~J}=8.8 \mathrm{~Hz}$,
$2 \mathrm{H}, \mathrm{j}, \mathrm{k}-\mathrm{H}$ or $\mathrm{l}, \mathrm{m}-\mathrm{H}), 8.14(\mathrm{~d}, \mathrm{~J}=7.2 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{h}-\mathrm{H}$ and $\mathrm{i}-\mathrm{H}), 8.13(\mathrm{~s}, 1 \mathrm{H}, \mathrm{a}-\mathrm{H}), 7.79(\mathrm{~d}$, $\mathrm{J}=8.9 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{j}, \mathrm{k}-\mathrm{H}$ or $\mathrm{l}, \mathrm{m}-\mathrm{H}), 7.53(\mathrm{~d}, \mathrm{~J}=8.2 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{n}-\mathrm{H}$ and o-H$), 7.44-7.40(\mathrm{~m}$, $2 \mathrm{H}, \mathrm{q}-\mathrm{H}$ and $\mathrm{p}-\mathrm{H}), 7.32-7.28(\mathrm{~m}, 2 \mathrm{H}, \mathrm{r}-\mathrm{H}$ and $\mathrm{s}-\mathrm{H}), 4.30(\mathrm{t}, \mathrm{J}=7.3 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{b}-\mathrm{H}), 1.95$ $(\mathrm{m}, 2 \mathrm{H}, \mathrm{c}-\mathrm{H}), 1.35(\mathrm{~m}, 6 \mathrm{H},(\mathrm{c}-\mathrm{f})-\mathrm{H}), 0.91-0.85(\mathrm{~m}, 3 \mathrm{H}, \mathrm{g}-\mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (100 MHz , CDCl_{3}): δ (TMS, ppm) 155.46, 154.31, 154.24, 145.07, 140.73, 140.34, 133.21, 131.63, $130.10,126.74,126.12,123.69,120.37,109.92,44.20,31.16,29.81,26.31,22.46$, 13.96.HRMS (ESI): m/z: Calcd for $\mathrm{C}_{29} \mathrm{H}_{27} \mathrm{ClN}_{5}^{+}: 480.1955[\mathrm{M}+\mathrm{H}]^{+}$; Found: 480.1955. 9,9'-((9-propyl-9H-purine-2,6-diyl)bis(4,1-phenylene))bis(9H-carbazole) (CPP)

The synthesis and purification of $\mathbf{C P P}$ were similar to that of $\mathbf{C P P C}$, but the input proportion of Compound $\mathbf{2}$ and (4-(9H-Carbazol-9-yl)phenyl)boronic acid was change from 1.2:1 to 1:2.2. Compound CPP was obtained as a white solid in 49% yield. ${ }^{1} \mathrm{H}$ NMR (400 MHz, CDCl 3): $\delta(\mathrm{TMS}, \mathrm{ppm}) 9.22\left(\mathrm{~d}, \mathrm{~J}=8.6 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{g}_{1}-\mathrm{j}_{1}-\mathrm{H}\right.$ or $\left.\mathrm{g}_{2}-\mathrm{j}_{2}-\mathrm{H}\right)$, $8.94\left(\mathrm{~d}, \mathrm{~J}=8.5 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{g}_{1}-\mathrm{j}_{1}-\mathrm{H}\right.$ or $\left.\mathrm{g}_{2}-\mathrm{j}_{2}-\mathrm{H}\right), 8.19(\mathrm{~s}, 1 \mathrm{H}, \mathrm{a}-\mathrm{H}), 8.16(\mathrm{~d}, \mathrm{~J}=7.8 \mathrm{~Hz}, 4 \mathrm{H}$, $\mathrm{e}_{1}-\mathrm{H}, \mathrm{e}_{2}-\mathrm{H}, \mathrm{f}_{1}-\mathrm{H}$ and $\left.\mathrm{f}_{2}-\mathrm{H}\right), 7.84\left(\mathrm{~d}, \mathrm{~J}=8.6 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{g}_{1}-\mathrm{j}_{1}-\mathrm{H}\right.$ or $\left.\mathrm{g}_{2}-\mathrm{j}_{2}-\mathrm{H}\right), 7.76(\mathrm{~d}, \mathrm{~J}=8.5$ $\mathrm{Hz}, 2 \mathrm{H}, \mathrm{g}_{1}-\mathrm{j}_{1}-\mathrm{H}$ or $\left.\mathrm{g}_{2}-\mathrm{j}_{2}-\mathrm{H}\right), 7.59-7.53\left(\mathrm{~m}, 4 \mathrm{H}, \mathrm{k}_{1}-\mathrm{H}, \mathrm{k}_{2}-\mathrm{H}, \mathrm{l}_{1}-\mathrm{H}\right.$, and $\left.\mathrm{l}_{2}-\mathrm{H}\right), 7.44(\mathrm{~d}, \mathrm{~J}=$ $15.4 \mathrm{~Hz}, 4 \mathrm{H}, \mathrm{m}_{1}-\mathrm{H}, \mathrm{m}_{2}-\mathrm{H}, \mathrm{n}_{1}-\mathrm{H}$ and $\left.\mathrm{n}_{2}-\mathrm{H}\right), 7.31\left(\mathrm{t}, \mathrm{J}=7.5 \mathrm{~Hz}, 4 \mathrm{H}, \mathrm{o}_{1}-\mathrm{H}, \mathrm{o}_{2}-\mathrm{H}, \mathrm{p}_{1}-\mathrm{H}\right.$ and $\left.\mathrm{p}_{2}-\mathrm{H}\right), 4.42(\mathrm{~d}, \mathrm{~J}=7.1 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{b}-\mathrm{H}), 2.11(\mathrm{q}, \mathrm{J}=7.3 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{c}-\mathrm{H}), 1.08(\mathrm{t}, \mathrm{J}=7.4 \mathrm{~Hz}$, $3 \mathrm{H}, \mathrm{d}-\mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta(\mathrm{TMS}, \mathrm{ppm}) 157.90,153.76,153.34,144.81$, $140.65,140.51,140.04,139.33,137.30,134.91,131.39,129.95,129.88,126.82$, 126.07, 126.01, 123.62, 123.53, 120.35, 120.22, 120.09, 109.97, 109.91, 45.65, 23.35, 11.40. HRMS (ESI): m/z: Calcd for $\mathrm{C}_{44} \mathrm{H}_{33} \mathrm{~N}_{6}{ }^{+}: 645.2767[\mathrm{M}+\mathrm{H}]^{+}$; Found: 645.2725 .

9,9'-((9-propyl-9H-purine-2,6-diyl)bis(4,1-phenylene))bis(9H-carbazole) (CHP)
The synthesis and purification of $\mathbf{C H P}$ were similar to that of $\mathbf{C P P}$, but with Compound 2 instead of Compound 3. Compound CHP was obtained as a white solid in 63% yield. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta(\mathrm{TMS}, \mathrm{ppm}) 9.23\left(\mathrm{~d}, \mathrm{~J}=8.6 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{j}_{1}-\right.$ m_{1} or $\left.\mathrm{j}_{2}-\mathrm{m}_{2}\right), 8.94\left(\mathrm{~d}, \mathrm{~J}=8.6 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{j}_{1}-\mathrm{m}_{1}\right.$ or $\left.\mathrm{j}_{2}-\mathrm{m}_{2}\right), 8.18-8.16\left(\mathrm{~m}, 5 \mathrm{H}, \mathrm{i}_{1}-\mathrm{H}, \mathrm{i}_{2}-\mathrm{H}, \mathrm{h}_{1}-\right.$ $\mathrm{H}, \mathrm{h}_{2}-\mathrm{H}$ and $\left.\mathrm{a}-\mathrm{H}(8.17)\right), 7.85\left(\mathrm{~d}, \mathrm{~J}=8.6 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{j}_{1}-\mathrm{m}_{1}\right.$ or $\left.\mathrm{j}_{2}-\mathrm{m}_{2}\right), 7.77(\mathrm{~d}, \mathrm{~J}=8.6 \mathrm{~Hz}$, $2 \mathrm{H}, \mathrm{j}_{1}-\mathrm{m}_{1}$ or $\left.\mathrm{j}_{2}-\mathrm{m}_{2}\right), 7.59-7.54\left(\mathrm{~m}, 4 \mathrm{H}, \mathrm{o}_{1}-\mathrm{H}, \mathrm{o}_{2}-\mathrm{H}, \mathrm{n}_{1}-\mathrm{H}\right.$ and $\left.\mathrm{n}_{2}-\mathrm{H}\right), 7.46-7.42(\mathrm{~m}, 4 \mathrm{H}$, $\mathrm{p}_{1}-\mathrm{H}, \mathrm{p}_{2}-\mathrm{H}, \mathrm{q}_{1}-\mathrm{H}$ and $\left.\mathrm{q}_{2}-\mathrm{H}\right), 7.33-7.30\left(\mathrm{~m}, 4 \mathrm{H}, \mathrm{r}_{1}-\mathrm{H}, \mathrm{r}_{2}-\mathrm{H}, \mathrm{s}_{1}-\mathrm{H}\right.$ and $\left.\mathrm{s}_{2}-\mathrm{H}\right), 4.42(\mathrm{t}, \mathrm{J}=$ $7.2 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{b}-\mathrm{H}), 2.06(\mathrm{~m}, 2 \mathrm{H}, \mathrm{c}-\mathrm{H}), 1.46-1.31(\mathrm{~m}, 6 \mathrm{H},(\mathrm{d}-\mathrm{f})-\mathrm{H}), 0.91(\mathrm{t}, \mathrm{J}=7.1 \mathrm{~Hz}$, $3 \mathrm{H}, \mathrm{g}-\mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): δ (TMS, ppm) 1157.89, 153.74, 153.33, $144.79,140.66,140.52,140.04,139.34,137.31,134.93,131.40,129.94,129.89$, $126.83,126.09,126.03,123.63,123.54,120.37,120.24,120.10,109.98,109.93,43.95$, 31.22, 29.93, 26.42, 22.52, 14.02. HRMS (ESI): m/z: Calcd for $\mathrm{C}_{47} \mathrm{H}_{39} \mathrm{~N}_{6}{ }^{+}: 687.3236$ $[\mathrm{M}+\mathrm{H}]^{+}$; Found: 687.3222.

Information encryption process

A clean 96-well plate was used for demonstrating the encryption scheme. For example, to paint the encrypted message "SCU" on the plate, the selected wells were injected with $200 \mu \mathrm{~L}$ of ethanol (solution I). Then, remaining wells were injected with $200 \mu \mathrm{~L}$ of water (solution II) to achieve information encryption. When all wells were injected with $0.2 \mu \mathrm{~L}$ compound solution ($5 \mathrm{mM}, \mathrm{DMF}$), and the plate was gently shaken, the information was displayed in 365 UV light.

Fig. S1. UV spectra of compound CPPC (A), CHPC (C), CPP (E), CHP (G) at
different concentrations ($1,3,5,7,9,11,13,15 \mu \mathrm{M}$); Absorption-concentration curve of compound $\mathbf{C P P C}(\mathrm{B}), \mathbf{C H P C}(\mathrm{D}), \mathbf{C P P}(\mathrm{F}), \mathbf{C H P}(\mathrm{H})$.

Fig. S2. Absorption spectra of $\mathbf{C P P C}(\mathrm{A}), \mathbf{C H P C}(\mathrm{B}), \mathbf{C P P}(\mathrm{C}), \mathbf{C H P}(\mathrm{D})$ in different

Fig. S3. Linear relationship between the maximum emission wavelength and the
solvent's polarity $\mathbf{C P P C}(\mathrm{A}), \mathbf{C H P C}(\mathrm{B}), \mathbf{C P P}(\mathrm{C}), \mathbf{C H P}(\mathrm{D})$.

Fig. S4. The detailed intermolecular interactions in CPPC crystal.

A

B

D

c-axis

Fig. S5. Single-crystal structure (A) and molecular stacking in CHPC single crystal in different views: (B) a-axis, (C) c-axis, and (D) b-axis. The blue parts are carbazole groups, the red parts are alkyl chains, and green parts are purine unit.
A

Cles)

Fig. S6. The detailed intermolecular interactions in CHPC crystal.

Table S1. The intermolecular hydrogen bonds data in entire packing modes of the

CPPC crystal.

Type of interaction	Amount	\mathbf{d} / \AA
C-H... π	2	2.523
	2	3.587
	2	3.699
$\mathrm{C}-\mathrm{H} \ldots \mathrm{N}$	2	2.631
	2	2.707

Table S2. The intermolecular hydrogen bonds data in entire packing modes of the

CHPC crystal.

Type of interaction	Amount	d/ \AA
C-H... π	2	2.705
	2	2.749
	2	3.222
	2	3.267
	2	3.489
	2	3.563
	2	3.909

Table S3 Crystal data and structure refinement of CPPC and CHPC.

Compound	CPPC	CHPC
Formula	$\mathrm{C}_{26} \mathrm{H}_{20} \mathrm{ClN} 5$	$\mathrm{C}_{29} \mathrm{H}_{26} \mathrm{ClN}_{5}$
$D_{\text {calc. } / \mathrm{g} \mathrm{cm}^{-3}}$	1.395	1.290
μ / mm^{-1}	1.814	1.574
Size $/ \mathrm{mm}^{3}$	$0.20 \times 0.15 \times 0.10$	$0.15 \times 0.2 \times 0.2$
$\mathrm{~T} / K$	150	150
Crystal System	triclinic	monoclinic
Space Group	$\boldsymbol{P}-1$	P $121 / \mathrm{c} 1$
a / \AA	$8.9375(3)$	$17.2831(14)$

b/Å	10.2919(3)	17.2445(12)
c/Å	11.4557(4)	8.2948(7)
$\alpha /{ }^{\circ}$	89.084(2)	90
$\beta /{ }^{\circ}$	88.820(2)	90.889(6)
γ^{\prime}	81.768(2)	90
V / \AA^{3}	1042.57(6)	2471.9(3)
$F(000)$	456.0	1008.0
Z	2	4
Measured Refl's.	20436	25763
Indep't Refl's	4238	4862
$R_{\text {int }}$	0.0554	0.1616
Parameters	290	317
Restraints	0	0
GooF	1.038	1.020
Final R indexes $[\mathrm{I}>=2 \sigma$ (I)]wR2 (all data)	$\begin{aligned} & \mathrm{R}_{1}=0.0400, \\ & \mathrm{wR}_{2}=0.0934 \end{aligned}$	$\begin{aligned} & \mathrm{R}_{1}=0.1128, \\ & \mathrm{wR}_{2}=0.2836 \end{aligned}$
Final R indexes [all data]	$\mathrm{R}_{1}=0.0534, \mathrm{wR}_{2}=0.1014$	$\mathrm{R}_{1}=0.1540, \mathrm{wR}_{2}=0.3488$
CCDC	2026792	2015608

Fig. S7. Anti-counterfeiting protection applications of the CHPC compound-based ink. (A) the stamped bilingual logo of school under 365 nm UV lamp, (B) the tamped QR codes under visible light and UV light (365 nm), and irradiated continuously for different time.

Fig. S8 Anti-counterfeiting protection applications of the CPP compound-based ink.
(A) the stamped bilingual logo of school under 365 nm UV lamp, (B) the tamped QR codes under visible light and UV light (365 nm), and irradiated continuously for different time.

Fig. S9. Anti-counterfeiting protection applications of the CHP compound-based ink.
(A) the stamped bilingual logo of school under 365 nm UV lamp, (B) the tamped QR codes under visible light and UV light (365 nm), and irradiated continuously for different time.

Table S4 The ClogP values of all compounds.

Compound	CPPC	CHPC	$\mathbf{C P P}$	$\mathbf{C H P}$
ClogP	7.38	8.97	12.72	14.31

D

Fig. S10. (A, C, E) CLSM images of HepG2 cells incubated with compounds (CHPC,
CPP and CHP respectively)and Nile red, Compound Channel, $\lambda_{\mathrm{ex}}=405 \mathrm{~nm}$. Nile red channel, $\lambda_{\mathrm{ex}}=543 \mathrm{~nm}$. (B, D, F) Fluorescent signal change of HepG2 cells stained with compounds (CHPC, CPP and CHP respectively) under continuous laser irradiation

NMR DATA

Fig. S11 ${ }^{1} \mathrm{H}$ NMR of Compound $\mathbf{2}$ in CDCl_{3}
$\%$

Fig. S12 ${ }^{1} \mathrm{H}$ NMR of Compound $\mathbf{3}$ in CDCl_{3}

Fig. S13 ${ }^{1} \mathrm{H}$ NMR of Compound CPPC in CDCl_{3}

Fig. S14 ${ }^{13} \mathrm{C}$ NMR of Compound $\mathbf{C P P C}$ in CDCl_{3}

Fig. $\mathbf{S 1 5}{ }^{1} \mathrm{H}$ NMR of Compound $\mathbf{C H P C}$ in CDCl_{3}

Fig. S16 ${ }^{13} \mathrm{C}$ NMR of Compound $\mathbf{C H P C}$ in CDCl_{3}

Fig. $\mathbf{S 1 7}{ }^{1} \mathrm{H}$ NMR of Compound $\mathbf{C P P}$ in CDCl_{3}

Fig. S18 ${ }^{13} \mathrm{C}$ NMR of Compound $\mathbf{C P P}$ in CDCl_{3}

Fig. S19 ${ }^{1} \mathrm{H}$ NMR of Compound $\mathbf{C H P}$ in CDCl_{3}

Fig. S20 ${ }^{13} \mathrm{C}$ NMR of Compound $\mathbf{C H P}$ in CDCl_{3}

ESI-MS Data

Fig. S21 ESI-MS of Compound 2

Fig. S22 ESI-MS of Compound 3

Fig. S23 ESI-MS of Compound CPPC.

Fig. S24 ESI-MS of Compound CHPC.

Fig. S24 ESI-MS of Compound CPP.

Fig. S25 ESI-MS of Compound CHP.

References

1. L. Shi, K. Li, L. L. Li, S. Y. Chen, M. Y. Li, Q. Zhou, N. Wang and X. Q. Yu, Chem. Sci., 2018, 9, 8969-8974.
2. S.M., Bonesi, M.A., Ponce, and R., Erra-Balsells, J. Heterocycl. Chem., 2004, 41, 161-171.
