Supporting Information

High-efficiency microwave absorbing performance originating from sufficient magnetic exchange coupling interaction and impressive dielectric loss

Gang Fang¹, Chuyang Liu^{1,2*}, Yun Yang¹, Kangsen Peng¹, Yufan Cao¹, Guoyue Xu¹, Yujing Zhang^{2,3}

1. School of Material Science and Technology, Nanjing University of

Aeronautics and Astronautics, Nanjing, 211106, China

- 2. State Key Lab of Silicon Materials, Zhejiang University, Hangzhou, 310027, China
- 3. School of Materials Science and Engineering, Nanjing University of Science and Technology, Nanjing 210094, China

Figures

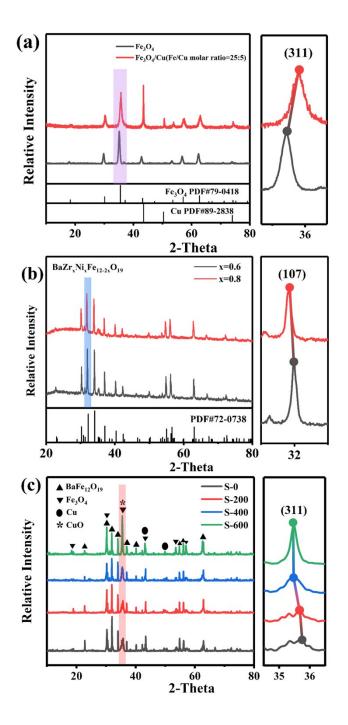


Fig. S1. XRD patterns of (a) pure Fe_3O_4 and Fe_3O_4/Cu sample along with the magnified XRD patterns of (311) lattice plane; (b) $BaZr_xNi_xFe_{12-2x}O_{19}$ samples with x=0.6,and 0.8 as well as the magnified XRD patterns of (107) lattice plane; (c) S-0, S-200, S-400 and S-600 along with the magnified XRD patterns of the (311) lattice plane.

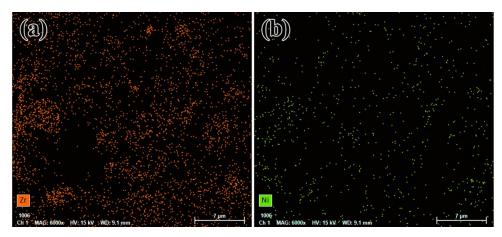


Fig. S2. The EDS element mapping of (a) Zr and (b) Ni for S-0.

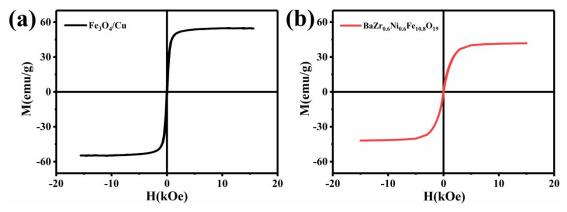


Fig. S3. Hysteresis loop of (a) Fe₃O₄/Cu, (b) BaZr_{0.6}Ni_{0.6}Fe_{10.8}O₁₉.

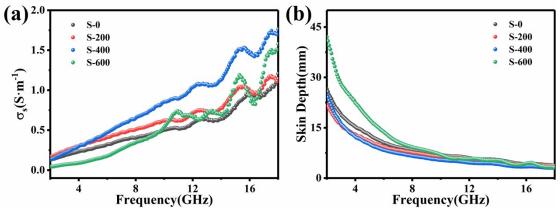


Fig. S4. (a) The AC conductivities and (b) skin depths of all samples over 2~18 GHz.