Ultra-fast, self-powered and flexible visible-light photodetector based on graphene/Cu$_2$O/Cu gradient heterostructures

Lujia Cong; Haitao Zhou; Mingzhu Chen; Hongbin Wang; He Chen; Jiangang Ma*; Siyi Yan;
Bingsheng Li; Haiyang Xu; Yichun Liu

Key Laboratory of UV-Emitting Materials and Technology, Ministry of Education, Northeast Normal University, Changchun 130024, PR China

*corresponding authors:
Jiangang Ma: majg@nenu.edu.cn

Supporting Information

Figure S1. Microscope picture of graphene/Cu$_2$O/Cu device
Figure S2. The Raman spectrum of the graphene electrode on sapphire substrate

Figure S2 shows the Raman spectrum of graphene transferred to a sapphire substrate. The weaker peak is the D band. The two stronger peaks represent the G band and the 2D band respectively. The intensity ratio of 2D to G bands (I_{2D}/I_G) was about 2, indicating the graphene film is most likely monolayer. In addition, the value of I_D/I_G is about 0.15, indicating that the structural defect density was relatively low in the graphene film [1].
Figure S3. The band gap diagram of Cu$_2$O

Figure S4. ESR spectra of Cu/Cu$_2$O film
Figure S5 The stability test of the graphene/Cu$_2$O/Cu photodetector

Figure S5 shows the response to 550 nm light at zero bias voltage after 6 month storage in ambient without packaging. The responsivity remains almost the same value as before, indicating that the graphene/Cu$_2$O/Cu photodetector has very good stability.

Figure S6 The external quantum efficiency (EQE) and detectivity (D^*) of the graphene/Cu$_2$O/Cu photodetector
REFERENCES