SUPPORTING INFORMATION

Elucidating the growth mechanism of ZnO films by Atomic Layer Deposition with Oxygen Gas via isotopic tracking

Authors: Tai Nguyen^{1,2}, Nathalie Valle¹, Jérôme Guillot¹, Jérôme Bour¹, Noureddine Adjeroud¹, Yves Fleming¹, Mael Guennou², Jean-Nicolas Audinot¹, Brahime El Adib¹, Raoul Joly^{1,2}, Didier Arl¹, Gilles Frache¹, and Jérôme Polesel-Maris^{1,*}

¹Materials Research and Technology Department, Luxembourg Institute of Science and Technology, 41, rue du Brill, L-4422 Belvaux, Luxembourg ²Department of Physics and Materials Science, University of Luxembourg, 41 rue du Brill, L-4422

²Department of Physics and Materials Science, University of Luxembourg, 41 rue du Brill, L-4422 Belvaux, Luxembourg

* Corresponding author: <u>jerome.polesel@list.lu</u>

Figure S1: HIM–SIMS mapping. Distribution of ¹⁸O (the red scale bar) and ¹⁶O (the green scale bar), and respective overlaps of ($^{18}O + ^{16}O$) of ZnO samples synthesized with and without 1 s of oxygen gas pulsing for each ALD loop at a deposition temperature of 180 °C. The scale bar is 500 nm.

Figure S2: XRD spectra of the ZnO thin film grown with and without oxygen gas pulsing at different deposition temperatures.

Figure S3: Electrical resistivity of ZnO thin films grown at different temperatures with conventional DI water and ¹⁸O-labelled water.