Supporting information

Thermal Effect on the Efficiency and Stability of Luminescent Solar Concentrators based on Colloidal Quantum Dots

Bingxu Liu^a, Shihuan Ren^a, Guangting Han^b, Haiguang Zhao^{b,*}, Xingyi Huang^e, Bin Sun^{c,d*}, Yuanming Zhang^{b,*}

^a College of Textile and Clothing, Qingdao University, No. 308 Ningxia Road,

Qingdao, 266071, P. R. China

^b College of Physics & The State Key Laboratory of Bio-Fibers and Eco-Textiles,

Qingdao University, No. 308 Ningxia Road, Qingdao, 266071, P. R. China

^c College of Microtechnology & Nanotechnology, Qingdao University, No. 308

Ningxia Road, Qingdao, 266071, P. R. China

^d Weihai Innovation Research Institute of Qingdao University, Weihai 264200, PR.

China

^e Department of Polymer Science and Engineering, Shanghai Key Laboratory of

Electrical Insulation and Thermal Aging, Shanghai Jiao Tong University, Shanghai

200240, PR China.

* Corresponding authors. Email addresses: <u>hgzhao@qdu.edu.cn</u>, <u>qdusun@qdu.edu.cn</u>, <u>zhangyuanming001@163.com</u>

Supporting tables and figures

Figure S1. The setting-up scheme for the thermal imaging measurement.

Figure S2. The size distribution of CdSe/CdS.

Figure S3. PL spectra recorded from the LSC based on CdSe/CdS QDs/PLMA polymer.

Figure S4. A3 is the selected area of the LSC for the temperature monitoring. A1 and A2 are the LSC exposed without and with sunlight (100 mW/cm^2), respectively.

Table S1. The dimension and mass of the LSCs	5.
---	----

Туре	Mass (g)	Long (cm)	Width (cm)	Thin (mm)
QDs/PLMA	13.43	6.5	7	3
QDs/PLMA-PMMA	73.7	10	10	7
QDs/PMMA-Glass	122.24	10	10	5

Ambient	Refractive	Total internal reflection	Reflectance
Temperature	index	efficiency	
Glass	1.50	0.745	4%
PLMA	1.49	0.741	3.9%
PMMA	1.49	0.741	3.9%

Table S2. Measured Refractive Index and calculated Total internal reflection efficiency and Reflectance.

Total internal reflection efficiency, P_{TIR} is defined by the escape cone identified by the

critical angle θ of the air/glass interface: 1

$$P_{TIR} = \sqrt{1 - \left(\frac{n_{air}}{n}\right)^2}$$

R can be calculated as follows:¹

$$R = \frac{(n - n_{air})^2}{(n_{air} + n)^2}$$

Table S3. The saturation temperature of LSCs during the thermal measurement.

Ambient	QDs/PLMA	QDs/PLMA-	QDs/PMMA-Glass
Temperature	(°C)	PMMA (°C)	(°C)
10 °C	25.6	22	15.5
20 °C	32.25	28.64	26.08
30 °C	40.35	39.42	33.94
40 °C	49.16	46.87	41.88

Table S4. The saturation time of LSCs during the thermal measurement.

Ambient Temperature	QDs/PLMA (s)	QDs/PLMA- PMMA (s)	QDs/PMMA-Glass (s)
10 °C	337	410	226
20 °C	272	367	308
30 °C	313	487	312

40 °C	254	387	201
-------	-----	-----	-----

Ambient	QDs/PLMA	QDs/PLMA-	QDs/PMMA-Glass
Temperature	(°C/min)	PMMA (°C/min)	(°C/min)
10 °C	2.46	1.49	0.98
20 °C	2.34	1.26	1
30 °C	2.29	1.28	0.99
40 °C	2.34	1.45	1.09

 Table S5. The temperature variation rate of LSCs.

Table S6. The temperature variation of the measured LSCs before and after temperature saturation.

Ambient	QDs/PLMA	QDs/PLMA-	QDs/PMMA-Glass
Temperature	(°C)	PMMA (°C)	(° °)
10 °C	13.8	10.2	3.7
20 °C	10.59	7.71	5.15
30 °C	11.93	10.39	5.16
40 °C	9.9	8.64	3.65

Table S7. The current output per unit area (mA/cm²) of the solar cells. The arrow bar for all the measured is less than $\pm 0.01 \text{ mA/cm}^2$

Cycles	QDs/PMMA-Glass	QDs/PMMA-PLMA	QDs/PLMA
1	1.697	2.176	3.715
2	1.694	2.189	3.729
3	1.701	2.182	3.751
4	1.722	2.189	3.753
5	1.716	2.199	3.783
6	1.723	2.205	3.774
7	1.730	2.214	3.792

Reference:

[1] V. I. Klimov, T. A. Baker, J. Lim, K. A. Velizhanin, H. McDaniel, *ACS Photonics*, 2016, 3, 1138-1148.