Supplementary Information

Trash into Treasure: stiff, thermally insulating and highly conductive carbon aerogels from leather wastes for high-

performance electromagnetic interference shielding

Bin Yuan¹[‡], Shuangxin Lai¹[‡], Jianjun Li², Li Li¹, and Shibing Bai^{1*}

1 State Key Laboratory of Polymer Materials Engineering, Polymer Research Institute of Sichuan

University, Chengdu 610065, China

2 Kingfa Sci. and Tech. Co., Ltd, Guangzhou 510663, China

Fig.S1 Schematic diagram of S^3M reactor (a) and the photograph of S^3M equipment¹. (c) is the

failure mechanism of leather fiber in S³M reactor².

Fig.S2 SEM photos of LWs broken by high-speed crusher (a,b,c); the digital photo of high-speed

crusherd (d).

Fig.S3 SEM image and actual photo of 2LWs-3PVA CAs

Fig.S4 TG/DTG image corresponding to the TG-IR in Figure.4a.

Eq.S1:

The porosity (P) is calculated using the following equation:

$$P = \left(1 - \frac{\rho_0}{\rho}\right) \times 100\%$$

Where ρ'_0 is the bulk density and ρ is the skeletal density of the prepared CAs.

Eq.S2:

$$\delta = (\sqrt{\pi \mu f \sigma})^{-1}$$

Here, f is the frequency, σ is the electrical conductivity, μ is the magnetic permeability of CAs ($\mu = \mu_0 \mu_r$, $\mu_0 = 4\pi \times 10^{-7}$ H/m, μ_r is the relative permeability of the material, $\mu_r = 1$ for the nonmagnetic CAs).

Peak Area (%)	Compounds Name	Similarity Index
26.82	Acetic acid	97
14.91	Acetamide	97
5.35	Carbamic acid, methyl-, 3-methylphenyl ester	73
4.74	N-methyl-acetamid	80
3.95	2-Piperidinone	84
3.77	Phenol	93
3.42	1H-pyrrole-2-carbonitrile	88
3.14	Propanamide	92

Tab.S1 The main components of liquid products during pyrolysis.

Elements	Proportion before	Proportion after pyrolysis		
	pyrolysis (wt%)	(wt%)		
С	49.47	64.78		
0	19.75	10.95		
Ν	14.85	4.01		
S	0.93	3.32		
Na	2.44	6.56		
Ca	0.21	1.52		
Cr	5.3	2.97		
Cl	7.05	5.89		

Tab.S2 EDS analysis of elemental composition and content before and after pyrolysis

Carbon materials	TASSE (dB cm ² g ⁻¹)	Frequency	References
Aerogel-like carbon from sugarcane	421.49	8.2-12.4 GHz	3
Carbon foam from sucrose and carbon nanotube	339.10	8.2-12.4 GHz	4
Carbon Foam Derived from Bread	16	6.0-12.4 GHz	5
Resorcinol-formaldehyde based carbon aerogels	526	8.2-12.4 GHz	6
Microcellular carbon foams from sucrose	389.43	8.2-12.4GHz	7
Porous graphene/polystyrene composites	256.7	8.2 GHz-12.4GHz	8
This work	605.85	8.2 GHz-12.4GHz	

Tab.S3 Comparison of TASSE of various carbon-based materials

References

- 1. S. Q. Yang, S. B. Bai and Q. Wang, J. Appl. Polym. Sci., 2015, 132, 42494.
- 2. B. H. Liu, Y. J. Li, Q. Wang and S. B. Bai, Compos. Sci. Technol., 2019, 181.
- 3. Y. Q. Li, Y. A. Samad, K. Polychronopoulou and K. Liao, *Acs Sustainable Chemistry & Engineering*, 2015, **3**, 1419-1427.
- 4. R. Narasimman, S. Vijayan, K. S. Dijith, K. P. Surendran and K. Prabhakaran, *Mater. Chem. Phys.*, 2016, **181**, 538-548.
- 5. Y. Yuan, Y. Ding, C. Wang, F. Xu, Z. Lin, Y. Qin, Y. Li, M. Yang, X. He, Q. Peng and Y. Li, ACS Applied Materials & Interfaces, 2016, 8, 16852-16861.
- 6. A. A. Mahani, S. Motahari and V. Nayyeri, *Mater. Chem. Phys.*, 2018, 213, 492-501.
- 7. P. Wilson, S. Vijayan and K. Prabhakaran, *Materials & Design*, 2018, 139, 25-35.
- 8. D.-X. Yan, P.-G. Ren, H. Pang, Q. Fu, M.-B. Yang and Z.-M. Li, J. Mater. Chem., 2012, 22.