Supporting information

W₁₈O₄₉/N-doped reduced graphene oxide hybrid architectures for full-spectrum photocatalytic degradation of organic contaminants in water

Jia Wang,^{a#}Xiaochen Fang,^{a,b#} Yue Liu,^a Ming-Peng Zhuo,^{a,b}* Mu-Dan Yao,^a Su-Lei Fu,^c Zuoshan Wang,^d* Weifan Chen,^a* Liang-Sheng Liao^b

^a School of Materials Science & Engineering, Nanchang University, Nanchang, Jiangxi
330031, China.

^b Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Institute of Functional Nano & Soft Materials (FUNSOM), Soochow University, Suzhou, Jiangsu 215123, China

^c Key Laboratory of Advanced Materials (MOE), School of Materials Science and Engineering, Tsinghua University, Beijing 100084, China

^d College of Chemistry, Chemical Engineering and Materials Science,Soochow University, Suzhou, Jiangsu 215123, China.

Authors to whom correspondence should be addressed: <u>chenweifan@ncu.edu.cn</u> (W.

F. Chen); <u>mpzhuo@suda.edu.cn</u> (M. P. Zhuo); <u>zuoshanwang@suda.edu.cn</u> (Z. S. Wang).

#These authors contributed equally to this work.

Experimental details

Materials

All the chemicals are analytical grade and can be used without further purification, including crystalline flake graphite (C), hydrochloric acid (HCl), sulfuric acid (H₂SO₄), sodium nitrate (NaNO₃), potassium permanganate (KMnO₄), hydrogen peroxide solution (H₂O₂), ammonium nitrate (NH₄NO₃), glycine (C₂H₅NO₂), ammonium metatungstate [(NH₄)₆H₂W₁₂O₄₀·H₂O, AMT] and rhodamine B (RhB). Dialysis bags were used during the synthesis process of graphene oxide.

Measurements

The phase composition of the samples will be analyzed by X-ray diffractometer (XRD, Bruker D8 Advance) with Cu K α radiation (λ =0.154 05 nm). The morphologies of different samples were characterized on a field emission scanning electron microscopy (SEM, FEI Quanta200F). The microstructures of the samples were observed by transmission electron microscopy (TEM, JEOL JEM-2100). The elemental composition of the sample surface and the W4f binding energy were determined by X-ray photoelectron spectroscopy (XPS). On the other hand, the ζ potential of the sample with 250 mg/L concentration was measured by a Malvern Zetasizer instrument (Nano S90, Malvern Instruments Ltd.) at 30 °C. The photocurrent of the samples under UV, Vis and NIR were recorded at a basic of 0 V versus the reference electrode, which could be obtained by an electrochemical workstation. During the test process, an ITO glass coated with W₁₈O₄₉/N-rGO was used as working electrode, the Pt and Na₂SO₄ solution (0.5 mol/L) were acted as reference electrode and electrolyte respectively. The photoluminescence property of products was evaluated by fluorescence spectrometer (FLS 1000) with an excitation wavelength of 270 nm and a scanning wavelength range of 300-800 nm.

Figure S1. (a) The low-magnification TEM image of the as-prepared $W_{18}O_{49}$. (b) The highmagnification TEM image of the as-prepared $W_{18}O_{49}/N$ -rGO. (c) The HRTEM image of one typical $W_{18}O_{49}$ with the scale bar of 2 nm. (d) The corresponding SAED of $W_{18}O_{49}$ in (c).

Figure S2. The SEM images (a-c) and Energy-dispersive x-ray spectroscopy (EDS) mappings of (d) O, and (e) W of synthesized W₁₈O₄₉.

Figure S3. The SEM images (a-c) and the EDS mappings of (d) C, (e) O, (f) N of synthesized N-rGO.

Figure S4. (a) The EDX spectrum of $W_{18}O_{49}/N$ -rGO. (b) The elemental mapping (C element) of $W_{18}O_{49}/N$ -rGO.

Figure S5. (a) Full range XPS spectra of $W_{18}O_{49}$ and $W_{18}O_{49}/N$ -rGO. (b) The W4f core level XPS spectra of $W_{18}O_{49}$.

Figure S6. (a) The time-dependent adsorption curve of RhB degraded by the $W_{18}O_{49}/N$ -rGO at different temperature of 15, 30 and 45 °C, and that of the $W_{18}O_{49}$ sample at 30 °C. (b) The effects of different active species scavengers on the degradation rate of RhB by $W_{18}O_{49}/N$ -rGO under NIR irradiation.

Figure S7. Tauc plots $[(\alpha hv)^{1/2}$ vs. hv] of N-rGO, W₁₈O₄₉ and W₁₈O₄₉/N-rGO.

Figure S8. The photocurrent response of $W_{18}O_{49}/N$ -rGO under UV light (a), Visible light (b), and Near-infrared light (c).

Figure S9. Photoluminescence spectrum of N-rGO (black line), $W_{18}O_{49}$ nanorods (blue line) and $W_{18}O_{49}$ /N-rGO hybrid nanomaterials (red line) with the excitation wavelength of 270 nm.