Supporting information

Low-temperature sprayed carbon electrode in modular HTL-free perovskite solar cells: comparative study on the choice of carbon sources

Ransheng Chen,^a Yulin Feng,^{ab} Jing Liu,^a Minhuan Wang,^a Hongru Ma,^b

Jiming Bian*a and Yantao Shi*b

- ^{a.} Key Laboratory of Materials Modification by Laser, Ion and Electron Beams (Ministry of Education), School of Physics, Dalian University of Technology, Dalian 116024, China
- ^{b.} State Key Laboratory of Fine Chemicals, School of Chemistry, Dalian University of Technology, Dalian 116024, China

*Corresponding authors (emails: jmbian@dlut.edu.cn (Bian J); emails: shiyantao@dlut.edu.cn (Shi Y)

Table S1. A summary	of device structur	re and ph	otovoltaic	e performat	nce of
C-PSCs.					

Carbon-electrode PSCs Structure	Perovskite	Cell Area (cm ²)	V _{oc} (V)	$J_{\rm sc}$ (mA cm ⁻²)	PCE (%)	Ref.
Hot-pressing method 85°C 0.4MPa	$Cs_{0.05}(MA_{0.17}FA_{0.83})_{0.95}Pb(I_{0.83}Br_{0.17})_{3}$	0.30 1.00	0.89 0.84	22.29 22.39	10.84 8.72	11
Carbon Perovekile * M.P. TIO; Blocking layer FT	$Cs_{0.06}(MA_{0.17}FA_{0.}$ 83) $_{0.94}Pb(I_{0.84}Br_{0.16})_{3}$	0.12 1.00	0.96 0.99	18.66 17.57	13.57 8.18	48

← Carbon ← MAPbI ₃ ← FTO	MAPbI ₃	0.07 1.00	1.04 0.99	21.27 19.63	14.38 9.72	40
Carbin Carbin Perovstite/TiO, Perovstite/TiO, Comment IIO, Comment IIO,	FA _x MA ₁₋ _x PbI _y Br _{3-y}	0.1	1.08	23.33	19.2	16
Perovalle- Snot- Bino Hilling Hilling Hilling	Cs _{0.05} (FA _{0.85} MA _{0.} 15) _{0.95} Pb(I _{0.85} Br _{0.15}) ₃	1.30	1.05	22.78	18.65	35
Carbon belt Hot-pressing	CsFA _{0.83} MA _{0.17} P bI _{2.53} Br _{0.47}	0.115	1.09	21.1	15.3	32
Al foil Carbon film	CH ₃ NH ₃ PbI ₃	0.08	1.002	21.30	13.53	25
Carbon Perovskite SnO ₂ ITO	FA _x MA ₁₋ _x PbI _y Br _{3-y}	1.0	1.01	20.48	12.34	34
Critism PEDIST Provide m100, p10	CsPbI ₃	0.08	0.80	18.58	10.55	50

Table S2. Parameters of the TRPL spectroscopy based on the pristine perovskite films and perovskite/carbon sample with various carbon sources.

$$Y(t) = A_1 e^{-t/\tau_1} + A_2 e^{-t/\tau_2} + y_0$$

MERGEFORMAT (1)

$$\tau_{ave} = \frac{A_{1}\tau_{1}}{A_{1}\tau_{1} + A_{2}\tau_{2}}\tau_{1} + \frac{A_{2}\tau_{2}}{A_{1}\tau_{1} + A_{2}\tau_{2}}\tau_{2} \times$$

MERGEFORMAT (2)

Sample	$\tau_1(ns)$	Standard error	$\tau_2(ns)$	Standard error	$\tau_{ave}(ns)$
Perovskite	25.94	0.89	437.97	11.55	254.91
MWCNT	4.94	0.17	43.65	0.83	21.65
Graphene	3.64	0.12	68.98	1.36	29.28
CNC	15.35	0.83	133.66	9.56	51.77

Table S3. Parameters of the ultraviolet photoelectron spectra based on different carbon sources.

$$\varphi = 21.2 - E_{\textit{cutoff}} + E_{\textit{Fermi } \setminus *}$$

MERGEFORMAT (3)

Carbon Sources	Ecutoff	E _{Fermi}	Work function	
	(eV)	(eV)	(eV)	
CNT	16.67	0.49	5.02	
CNC	16.72	1.65	6.13	
Graphene	16.75	0.69	5.14	

Fig. S1. (a) XRD patterns of the as-grown perovskite films. (b) top-view SEM images of perovskite films.

Fig. S2. The resistance- temperature curves of FTO film under heating and cooling process.

Fig. S3. J-V curves (cell area: 1 cm²) under solar simulator AM 1.5 of different carbon-based non-modular PSCs (CNC, MWCNT, Graphene).

Fig. S4. (a) the cut-off energy (left part of Fig.4c) and (b) Fermi edge (right part of Fig.4c)

Fig. S5. Raman spectra of MWCNT, where the D-band originated from structural defects in carbon materials; the other G-band originated from graphite structure.

Fig. S6. XRD spectra of MWCNT.

Fig. S7. Thermo gravimetric analysis (TGA) plot of MWCNT, which a convinced sign of thermal stability in the range of 25-800 °C.

Fig. S8. Isotherm linear plot of MWCNT, and the specific surface area was $138.56 \text{ m}^2/\text{g}$.

Fig. S9. Barrett-Joyner-Halenda (BJH desorption) pore volume & pore size curve of MWCNT, where the pore volume was 0.75 ml/g, the pore size was 16.31 nm.