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Fig. S1 (a) Schematic illustration of the fabrication procedure for electrochromic smart windows 

based on WO3/Ti3C2Tx hybrids, (b) Tyndall effect images of WO3, Ti3C2Tx and WO3/Ti3C2Tx v/v 

1:1 colloid.
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Fig. S2 XPS spectra of (a) W 4f core level, (b) Ti 2p core level, and (c) C 1s core level for 

WO3/Ti3C2Tx hybrids.

Figure S2 includes the XPS core-level spectra of each element including W 4f, Ti 2p, and C 1s for 

WO3/Ti3C2Tx hybrids. W 4f core-level spectrum shows a double peak at binding energies of 35.69 

eV and 37.8 eV, attributed to W 4f7/2 and W 4f5/2, respectively (Figure S2a). These peaks are 

illustrative a 6+ oxidation state of W in WO3.1 The small peaks in at binding energy of 34.8 eV, 

36.9 eV, and 41.15 eV are ascribed to a 5+ oxidation state of W in WO3. The presence of W5+ 

state, corresponding to the cations in the non-stoichiometric WOx along with the shear plane 

structure, confirms the formation of not only stoichiometric WO3 but also non-stoichiometric 

WOx. Figure S2b shows the Ti 2p core-level for the WO3/Ti3C2Tx hybrids. It was deconvoluted 

into the components corresponding to Ti–C, Ti (Ⅱ), Ti (Ⅲ), Ti(Ⅳ)–TiO2, and Ti–F peak.2-4 In the 

Ti 2p3/2 level, each component was positioned at binding energies of 454.8, 455.7, 457, 458.7, and 

459.9 eV, respectively. The presence of Ti(Ⅳ)-TiO2 and Ti-F is attributed by the terminal groups 

during the removal process of Al from the Ti3AlC2 MAX phase. From C 1s core level of 

WO3/Ti3C2Tx hybrids (Figure S2c), the spectra have two significant peaks corresponding to Ti–C 

and C–C bonding that are located at 281.8 and 284.7 eV, respectively.5,6 Besides, peaks related to 

C=O, C–OH, and C–O–Ti bonding indicate the presence of functional groups.
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Fig. S3 (a) TEM image of Ti3C2Tx nanosheets with SEAD pattern given in the inset; EDS mapping 

of WO3/Ti3C2Tx hybrids film with (b) SEM image of mapping area, (c) W element, (d) O element, 

(e) Ti element, and (f) C element.
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Fig. S4 (a) AFM image of WO3/Ti3C2Tx hybrids on ITO glass and (b) height profile of the 

identified line on the AFM image. 
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Fig. S5 Optical transmittance spectra of devices based on (a) WO3/Ti3C2Tx (v/v 10:1), (b) 

WO3/Ti3C2Tx (v/v 4:1), (c) WO3/Ti3C2Tx (v/v 2:1), (d) WO3/Ti3C2Tx (v/v 4:3).
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Fig. S6 EC switching kinetics of devices based on (a) WO3/Ti3C2Tx (v/v 10:1), (b) WO3/Ti3C2Tx 

(v/v 4:1), (c) WO3/Ti3C2Tx (v/v 2:1), (d) WO3/Ti3C2Tx (v/v 4:3) at a wavelength of 700 nm.
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Fig. S7 Electrical conductivity of WO3 and WO3/Ti3C2Tx hybrids films with various v/v ratio.
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Fig. S8 CV curves of (a) WO3/Ti3C2Tx (v/v 10:1), (b) WO3/Ti3C2Tx (v/v 4:1), (c) WO3/Ti3C2Tx 

(v/v 2:1), (d) WO3/Ti3C2Tx (v/v 4:3) with different scan rates. 
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Fig. S9 (a) Optical transmittance spectrum in bleaching and coloration, (b) EC switching kinetics 

of a flexible EC device (5 cm ⅹ 5 cm) based on WO3/Ti3C2Tx hybrids.
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