ZnS/CdX (X = S, Se, Te) core/shell nanowires: An attempt at fine-tuning electronic bandgaps and SQ efficiencies

Rishit S. Shukla^a, Vidit B. Zala^a, Sanjeev K. Gupta^{b,*}, P. N. Gajjar^{a,*} ^aDepartment of Physics, University School of Sciences, Gujarat University, Ahmedabad 380 009, India ^bComputational Materials and Nanoscience Group, Department of Physics, St. Xavier's College, Ahmedabad 380009, India

*Corresponding author: <u>pngajjar@gujaratuniversity.ac.in</u> (Prof. P.N. Gajjar) and <u>Sanjeev.gupta@sxca.edu.in</u> (Dr. Sanjeev K. Gupta)

Table S1. The static dielectric constants and the energy spectrum for negative values of real part of dielectric constants in the perpendicular and parallel cases, for all the pristine and c/s NWs.

Nanowire	Perpendicular Optical Vector		Parallel Optical Vector	
	$\varepsilon_{2}(0)$	Energy range for $\varepsilon_{\parallel}(\omega) < 0$	$\varepsilon_{\parallel}(0)$	Energy range for $\varepsilon_{\parallel}(\omega) < 0$
ZnS	2.70	8.42 eV – 9.32 eV	2.51	8.66 eV – 9.36 eV
CdS	2.53	8.14 eV – 8.72 eV	2.32	8.26 eV - 8.76 eV
CdSe	2.73	7.72 eV – 8.38 eV	2.45	7.84 eV – 8.40 eV
CdTe	2.98	6.64 eV – 7.66 eV	2.76	6.68 eV – 8.16 eV
ZnS/CdS	2.69	8.18 eV – 8.94 eV	2.47	8.58 eV – 9.00 eV
ZnS/CdSe	3.42		2.69	8.90 eV – 9.40 eV
ZnS/CdTe	4.23	8.54 eV – 8.80 eV	3.21	6.94 eV – 8.94 eV

Table S2. The static refractive indices and the maximum refractive indices of the pristine and c/s NWs, for both the parallel and perpendicular optical vectors.

Nanowire	Perpendicular Optical Vector $n_{\square}(0)$ $n_{\square max}(\omega)$		Parallel Optical Vector $n_{\parallel}(0)$ $n_{\parallel}(\omega)$	
ZnS	1.64	2.22 at 2.77 aV	1 50	2.12 of 4.47 oV
	1.04	2.22 at 2.77 ev	1.30	2.12 at 4.47 CV
CdS	1.59	2.06 at 2.15 eV	1.52	1.80 at 4.34 eV
CdSe	1.65	2.20 at 2.02 eV	1.57	1.91 at 3.65 eV
CdTe	1.72	2.33 at 2.21 eV	1.66	2.26 at 3.48 eV
ZnS/CdS	1.64	2.16 at 2.25 eV	1.57	1.98 at 4.36 eV
ZnS/CdSe	1.85	2.29 at 1.56 eV	1.64	1.91 at 3.25 eV
ZnS/CdTe	2.06	2.78 at 2.28 eV	1.79	2.14 at 2.75 eV

Table S3. The maxima of the extinction coefficients and the skin depths, for perpendicular and parallel incidents, of the pristine and c/s NWs.

Nanowire	Perpendicular $K_{\square max}(\omega)$	Optical Vector δ _ℤ (Å)	Parallel Opt $K_{\parallel max}(\omega)$	ical Vector $\delta_{\parallel}(\text{\AA})$
ZnS	1.64	217	1.58	217
CdS	1.59	198	1.52	230
CdSe	1.65	219	1.57	242
CdTe	1.72	278	1.66	378
ZnS/CdS	1.64	192	1.57	234
ZnS/CdSe	1.85	586	1.64	259
ZnS/CdTe	2.06	416	1.79	242

Nanowire	Perpendicular Optical Vector		Parallel Optical Vector	
	$R_{\mathbb{P}}(0)$	$R_{\square max}(\omega)$	$R_{\parallel}(0)$	$R_{\parallel max}(\omega)$
ZnS	5.93%	28.09% at 9.08 eV	5.11%	21.90% at 8.85 eV
CdS	5.22%	32.33% at 8.43 eV	4.29%	22.60% at 8.43 eV
CdSe	6.03%	32.33% at 8.10 eV	4.86%	23.30% at 8.04 eV
CdTe	7.08%	30.38% at 7.13 eV	6.16%	25.04% at 6.89 eV
ZnS/CdS	5.89%	30.71% at 8.39 eV	4.95%	20.24% at 8.72 eV
ZnS/CdSe	8.89%	18.21% at 2.56 eV	5.90%	18.81% at 9.28 eV
ZnS/CdTe	11.95%	29.42% at 2.45 eV	8.04%	25.05% at 7.65 eV

Table S4. The static reflectances and the maximum reflectances of the pristine and c/s NWs, for both the parallel and perpendicular optical vectors.