Supplementary information for

Anisotropic ionic transport-controlled synaptic weight update by protonation

in VO₂ transistor

Jaeseoung Park¹, Chadol Oh¹ and Junwoo Son^{1,a)}

¹ Department of Materials Science and Engineering, Pohang University of Science and Technology (POSTECH), Pohang 37673, Republic of Korea

a) jwson@postech.ac.kr

Figure S1 | Epitaxial growth of (101)_R and (100)_R VO₂ thin films. a. Structural analysis of epitaxial (101)_R and (100)_R VO₂ films on (101) and (100) TiO₂ substrates. b. The rocking curves of both VO₂ diffraction peaks were shown, and they show similar FWHM value as 0.025°. c. Sheet resistance (R_S) – Temperature (K) measurements from 300 K to 395 K during heating and cooling process of both VO₂ films. They show similar R_S change during their intrinsic metal-insulator transition (MIT) phenomena.

Figure S2 | **Device fabrication process. a.** Epitaxial 10-nm-thick $(101)_R$ and $(100)_R$ VO₂ thin films were prepared by PLD methods. **b.** VO₂ channel were defined by photolithography followed by wet HNO₃ etching process. **c.** 30-nm-thick Pt source and drain electrodes were deposited by RF sputtering. **d.** 300-nm-thick porous silica layer were spin-coated followed by curing process. **e.** 30-nm-thick Pt gate electrode were deposited by RF sputtering. **f.** The porous silica layer on the area of source and drain electrode were wet etched with oxide etchant for contact.

Figure S3 | Specific capacitance as a function of frequencies. The frequency-dependent capacitance measurements (*C-f*, 1 kHz $\leq f \leq 5$ MHz) were performed on the Pt (gate)/electrolyte/VO₂ stack. the specific capacitance decreased with $f (\sim 0.4 \,\mu\text{F/cm}^2 \text{ at } 1 \,\text{kHz} \rightarrow \sim 0.02 \,\mu\text{F/cm}^2 \text{ at } 5 \,\text{MHz})$ due to the slow response of mobile protons in porous silica with respect to high- $f V_G$.

Figure S4 | Excitatory postsynaptic current (EPSC) triggered by D_P (= 20, 30, and 50 ms) of V_{pre} pulse as a function of A_P of V_{pre} in (101)_R and (100)_R-VO₂ synaptic transistors.

Figure S5 | EPSC peak of single V_{pre} pulse as a function of D_P and A_P (101)_R and (100)_R-VO₂ synaptic transistors. The similar value of EPSC with short D_P (= 10 ms) and long D_P (=100 ms) at small A_P (= 0.5 V) means that there is no additional H⁺ incorporation with long D_P . However, the EPSC with short D_P (= 10 ms) and long D_P (=100 ms) at large A_P (= 3.0 V) shows significant differences due to the large amount of H⁺ incorporation in VO₂ lattices.

Figure S6 | The memory retention in the both VO₂ synaptic transistors with A_P (= 0.5 - 3.0 V) and D_P (= 30, 50, and 100 ms). The power function $\gamma = b \times t^{-m}$, where γ is the memory retention, b is the initial value, t is time, and m is the decay rate. Retention time increases as m decreases. By quantitative evaluation, in the same transistor, m decreased with increase in A_P and D_P .

Figure S7 | **a.** a short D_P of V_{pre} pulse (= 10 ms) and **b.** a long D_P of V_{pre} pulse (= 100 ms) as a function of the A_P of V_{pre} in (101)_R and (100)_R-VO₂ synaptic transistors in logarithmic scale.

Figure S8

Figure S8 | Potentiation and Depression of $(101)_R$ and $(100)_R$ VO₂ synaptic transistors

Figure S9 | the crystallographic axes of monoclinic VO_2 and rutile VO_2 phases