Supporting Information High energy storage density with high power density in Bi_{0.2}Sr_{0.7}TiO₃/BiFeO₃ multilayer thin films Baijie Song, Kun Zhu, Hao Yan, Liuxue Xu, Bo Shen, Jiwei Zhai* Key Laboratory of Advanced Civil Engineering Materials of Ministry of Education, Functional Materials Research Laboratory, School of Materials Science and Engineering, Tongji University, Shanghai 201804, China *Corresponding author: Jiwei Zhai. E-mail address: apzhai@tongji.edu.cn

Power density can be calculated as following equation: $p_D = \frac{U_{rec}}{2ESRC}$, where ESR

 $ESR = tan\delta \times X_C = \frac{tan\delta}{2\pi fC}$ means equivalent series resistance, expressed as:

3 above equations, calculated power density of 2BFO reaches up to 2.28 MW cm⁻³ at 1

4 kHz. Note that calculated p_D is greatly difference from measured p_D . It is so strange.

5 But p_D of the same order of magnitude~ 6.47 MW cm⁻³ is also obtained in

6 BaSn_{0.15}Ti_{0.85}O₃/Ba_{0.6}Sr_{0.4}TiO₃ thin film with $U_{\rm rec} \sim 43.28$ J cm⁻³, $\tan \delta \sim 0.02$ and $f \sim 1$ kHz

7 based on above equations¹.In addition, 0.94(Bi_{0.5}Na_{0.5})_{0.94}TiO₃-0.06BaTiO₃/BiFeO₃

8 multilayer thin film also possesses power density of 47 MW cm⁻³ measured by a RLC

9 circuit while calculated value of that is only near to 2.01 MW cm⁻³ with $U_{\rm rec} \sim 31.96$ J

0 cm⁻³, $\tan \delta \sim 0.05$ and $f \sim 1$ kHz². As far as we know, U_{rec} is obtained via P-E loops under

11 AC while measured p_D is based on current magnitude under DC. The electrode area of

12 P-E and charge/discharge measurement is 0.3 mm and 2 mm. Voltage source type and

13 electrode area may lead to the divergence.

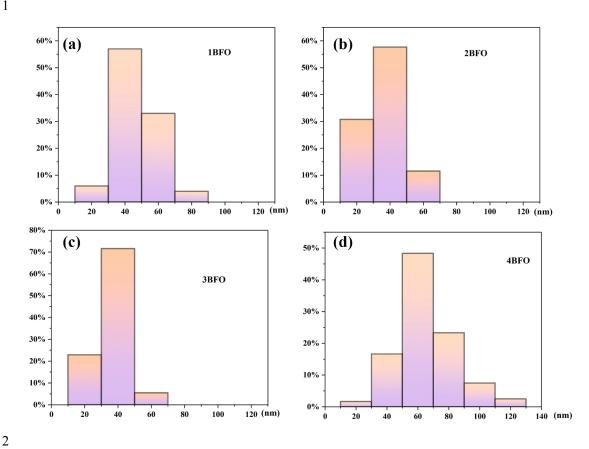
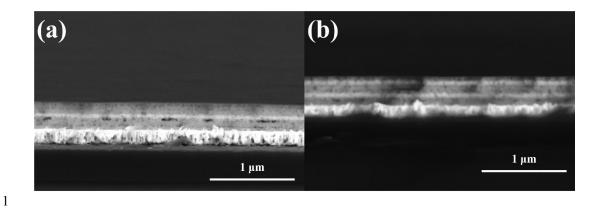
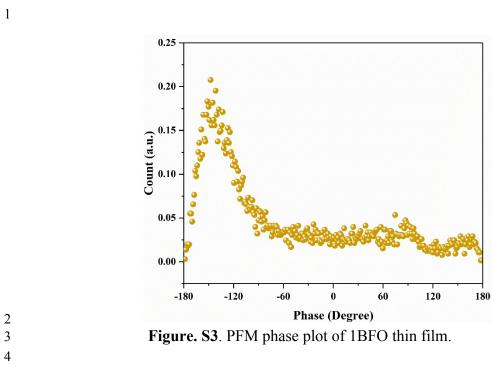




Figure. S1. Particle size distribution of (a) 1BFO, (b) 2 BFO, (c) 3 BFO and (d) 4BFO

thin film.

2 Figure. S2. The cross-sectional micrograph of (a) 1BFO and (b) 2BFO thin film.

Figure. S3. PFM phase plot of 1BFO thin film.

Table. S1. The roughness of xBFO thin films.

BFO layer	Rq (nm)	Ra (nm)
1	0.841	0.683
2	1.120	0.861
3	1.260	0.907
4	2.010	1.630

S. Yu, C. Zhang, M. Wu, H. Dong and L. Li, Journal of Power Sources, 2019, 412, 648-654.

P. Chen, S. Wu, P. Li, J. Zhai and B. Shen, *Inorganic Chemistry Frontiers*, 2018, **5**, 2300-2305.