Electronic Supplementary Material (ESI) for Journal of Materials Chemistry C. This journal is © The Royal Society of Chemistry 2021

Supplementary Information

Figure S1. XRD refinements of (a) CYHA:0.04Ce³⁺, (b) CYHA:0.04Ce³⁺,0.02Cr³⁺, (c) CYHA:0.02Cr³⁺,0.03Yb³⁺, and (d) CYHA:0.04Ce³⁺,0.02Cr³⁺,0.03Yb³⁺.

Table S1. Crystallographic parameters gained from Rietveld refinements for representative CYHA, CYHA: $0.04Ce^{3+}$, CYHA: $0.02Cr^{3+}$,CYHA: $0.04Ce^{3+}$, $0.02Cr^{3+}$, $0.02Cr^{3+}$, $0.03Yb^{3+}$, and CYHA: $0.04Ce^{3+}$, $0.02Cr^{3+}$, $0.03Yb^{3+}$ samples.

	СҮНА	Ce ³⁺	Cr ³⁺	Ce ³⁺ ,Cr ³⁺	Cr ³⁺ , Yb ³⁺	Ce ³⁺ ,Cr ³⁺ ,Yb ³⁺		
Crystal system	Tetragonal (Ia-3d)							
$\alpha = \beta = \gamma$	90°							
<i>a</i> = b = c (Å)	12.44854(17)	12.44837(22)	12.4468(4)	12.4443(4)	12.448429	12.4510(1)		
<i>V</i> (ų)	1929.10(5)	1929.02(6)	1928.31(12)	1927.11(10)	1929.05	1930.15		
R _{wp} (%)	7.66	7.48	7.11	6.65	5.41	4.87		
R _p (%)	5.51	5.02	5.18	4.73	3.91	3.70		
χ²	4.331	4.464	2.768	3.724	3.556	2.060		

Figure S2. XRD patterns of (a) CYHA: xCe^{3+} ($0 \le x \le 0.06$), (b) CYHA: yCr^{3+} ($0.005 \le y \le 0.10$), (c) CYHA: $0.04Ce^{3+}$, yCr^{3+} ($0.005 \le y \le 0.10$), (d) CYHA: $0.02Cr^{3+}$, zYb^{3+} ($0 \le z \le 0.15$), (e) CYHA: $0.04Ce^{3+}$, zYb^{3+} ($0 \le z \le 0.15$), (f) CYHA: $0.04Ce^{3+}$, zYb^{3+} ($0 \le z \le 0.15$)

Figure S3. SEM and EDS mapping images of CYHA:0.02Cr³⁺. All the elements show uniform distribution.

 Table S2. Comparison of Dq/B and PL properties for typical broadband NIR emitting phosphors.

Phosphors	λ _{em} (nm)	FWHM (nm)	Dq/B	IQE (%)	l (T = 150 °C)	Ref.
Y ₂ CaAl ₄ SiO ₁₂ :0.06Cr ³⁺	744	160	2.43	75.9	~80%	1
$Ca_3Sc_2Si_3O_{12}:0.06Cr^{3+}$	770	110	2.74	92.3	97.4%	2
$Ca_2YHf_2Al_3O_{12}:0.02Cr^{3+}$	775	137	2.27	75	80%	This work
$Ca_2LuScGa_2Ge_2O_{12}:0.02Cr^{3+}$	800	150	1.97	-	59%	3
ScBO ₃ :0.02Cr ³⁺	800	120	2.15	65	~51%	4
La ₂ MgZrO ₆ :0.02Cr ³⁺	825	210	2.53	58	<53%	5
MgTa ₂ O ₆ :0.21Cr ³⁺	834	140	2.50	-	-	6
$LiInSi_2O_6:0.06Cr^{3+}$	840	143	1.75	75	77%	7
LiScP ₂ O ₇ :0.06Cr ³⁺	880	170	1.84	38	~20%	8

Table S3. Photoelectric properties of the pc-LEDs with CYHA phosphors

	Input electrical power (mW)	400-1100 nm optical power (mW)	400-1100 nm photoelectric efficiency (%)	650-1100 nm optical power (mW)	650-1100 nm photoelectric efficiency (%)
460 nm Chip 0.02Cr ³⁺	52.1 (20 mA)	3.856	7.40	2.71	5.20
460 nm Chip 0.02Cr ³⁺ ,0.03Yb ³⁺	52.06 (20 mA)	-	-	3.18	6.1
405 nm Chip 0.04Ce ³⁺ ,0.02Cr ³⁺ ,0.03Yb ³⁺	58.92 (20 mA)	1.841	3.12	1.65	2.79

References

- 1. M. Mao, T. Zhou, H. Zeng, L. Wang, F. Huang, X. Tang and R.-J. Xie, J. Mater. Chem. C, 2020, 8, 1981-1988.
- 2. Z. Jia, C. Yuan, Y. Liu, X.-J. Wang, P. Sun, L. Wang, H. Jiang and J. Jiang, Light Sci. Appl., 2020, 9, 86.
- 3. B. Bai, P. Dang, D. Huang, H. Lian and J. Lin, *Inorg. Chem.*, 2020, **59**, 13481-13488.
- 4. Q. Shao, H. Ding, L. Yao, J. Xu, C. Liang and J. Jiang, *RSC Adv.*, 2018, **8**, 12035-12042.
- 5. H. Zeng, T. Zhou, L. Wang and R.-J. Xie, Chem. Mater., 2019, **31**, 5245-5253.
- 6. G. Liu, M.S. Molokeev, B. Lei and Z. Xia, J. Mater. Chem. C, 2020, 8, 9322-9328.
- 7. X. Xu, Q. Shao, L. Yao, Y. Dong and J. Jiang, Chem. Eng. J., 2020, 383, 123108.
- 8. L. Yao, Q. Shao, S. Han, C. Liang and J. He, J. Jiang, Chem. Mater., 2020, 32, 2430-2439.