Electronic Supplementary Material (ESI) for Journal of Materials Chemistry C. This journal is © The Royal Society of Chemistry 2021

1 Supporting Information

2

Filter-free Color Image Sensor Based on CsPbBr_{3-3n}X_{3n} (X=Cl, I) Single Crystals

5 Peng Zhang, Yunqiu Hua, Xiang Li, Longzhen Zhang, Lin Liu, Rongzhen Li, and Guodong

6 Zhang*, Xutang Tao*

7

9 **Fig. S1** (a) As-prepared $I_{1.5}$ polycrystal. (b) $I_{1.5}$ polycrystal after exposure to the room 10 environment for 2 d. (c) $I_{1.5}$ polycrystal after exposure to the room environment for 5 d.

11

Fig. S2 Thermogravimetric-differential scanning calorimetry (TG-DSC) curves for the (a) Cl₃,
(b) Cl_{2.5}, (c) Cl₂, (d) Cl_{1.5}, (e) Cl₁, (f) Cl_{0.5}, (g) Br₃, (h) I_{0.5} and (i) I₁ crystals.

Fig. S2a-i show the TG-DSC curves for the Cl_3 , $Cl_{2.5}$, Cl_2 , $Cl_{1.5}$, Cl_1 , $Cl_{0.5}$, Br_3 , $I_{0.5}$, and I_1

16 crystals, respectively, obtained at melting points of 610, 594, 577, 559, 550, 562, 567, 547, and
17 508 °C, respectively.

18

20 **Fig. S3** Melting points of the $CsPbBr_{3-3n}X_{3n}$ crystals.

Fig. S3 shows the melting points depending on the compositions of CsPbBr_{3-3n}X_{3n} crystals. The addition of I lowered the melting points of CsPbBr_{3-3n}I_{3n} crystals. With the increase of I content, the melting point of CsPbBr_{3-3n}I_{3n} crystal decreases. However, the situation of CsPbBr_{3-3n}Cl_{3n} crystals is complicated. From Br₃ to Cl₁, the melting point of CsPbBr_{3-3n}Cl_{3n} crystal decreases, while from Cl₁ to Cl₃, the melting point of CsPbBr_{3-3n}Cl_{3n} crystal increases.

Fig. S4 Scanning electron microscope (SEM) of the polished (a) Cl_{3} , (b) $Cl_{2.5}$, (c) Cl_{2} , (d) $Cl_{1.5}$, (e) Cl_{1} , (f) $Cl_{0.5}$, (g) Br_{3} , (h) $I_{0.5}$ and (i) I_{1} single crystal wafers.

Fig. S4a-i show the SEM of the Cl₃, Cl_{2.5}, Cl₂, Cl_{1.5}, Cl₁, Cl_{0.5}, Br₃, I_{0.5} and I₁wafer, respectively. There are no defects such as grain boundaries or inclusions inside CsPbBr_{3-3n}X_{3n} single crystals, which proves the high crystalline quality of these crystals. Defects on the crystal surface are scratches caused by processing.

34

35 **Table S1** X-ray fluorescence (XRF) results of CsPbBr_{3-3n}X_{3n} crystals.

	Cl _{2.5}	Cl ₂	Cl _{1.5}	Cl_1	Cl _{0.5}	I _{0.5}	I_1
Br/mass%	7.02	16.7	23.9	15.3	37.0	31.5	27.5
Cl or I/mass%	21.4	15.0	11.0	15.6	2.96	14.2	19.3
Chemical formula	CsPbBr _{0.44} Cl _{2.56}	CsPbBr _{0.99} Cl _{2.01}	CsPbBr _{1.53} Cl _{1.47}	CsPbBr _{2.06} Cl _{0.94}	CsPbBr _{2.54} Cl _{0.46}	CsPbBr _{2.46} I _{0.54}	$\begin{array}{c} CsPbBr_{2.08} \\ I_{0.92} \end{array}$

37

Fig. S5 Linear fitting of the optical band gap of the a) CsPbBr_{3-3n}Cl_{3n} and b) CsPbBr_{3-3n}I_{3n}
crystals.

40

41

42 Fig. S6 Photographs of the (a) fresh cut I₁ crystal wafer and (b) the one put in the ambient
43 atmosphere for a few hours.

Fig. S6a shows the fresh cut kermesinus I₁ crystal wafer. However, after a few hours, the
kermesinus I₁ crystal putting in the ambient atmosphere changes to yellow as shown in Fig.
S6b.

49 Fig. S7 Responsivity spectrum of the (a) Cl₃, (b) Cl_{2.5}, (c) Cl₂, (d) Cl_{1.5}, (e) Cl₁, (f) Cl_{0.5}, (g)
50 Br₃, and (h) I_{0.5} device at different bias voltages.

51

52

53

Fig. S8 Broadband photodetection spectrum of the (a) Cl_3 , (b) $Cl_{1.5}$, (c) Br_3 , and (d) $I_{0.5}$ device at different bias voltages.

58 **Fig. S9** FWHMs of the (a) Cl_{3} , (b) $Cl_{2.5}$, (c) Cl_{2} , (d) $Cl_{1.5}$, (e) Cl_{1} , (f) $Cl_{0.5}$, (g) Br_{3} , and (h) $I_{0.5}$

59 device at a bias voltage of 10 V.

62 Fig. S10 Responsivity spectrum and FWHMs of the (a) Cl_{3} , (b) $Cl_{2.5}$, (c) Cl_{2} , (d) $Cl_{1.5}$, (e) Cl_{1} ,

- 63 (f) $Cl_{0.5}$, (g) Br_3 , and (h) $I_{0.5}$ devices with 300 μ m thickness at a bias voltage of 10 V.
- 64

Fig. S11 I-t curves of the (a) Cl_3 , (b) $Cl_{2.5}$, (c) Cl_2 , (d) $Cl_{1.5}$, (e) Cl_1 , (f) $Cl_{0.5}$, (g) Br_3 , and (h)

- $67\ \ I_{0.5}$ devices with 1.5 mm thickness at a bias voltage of 10 V.