# Supporting Information

# Co<sub>3</sub>C as a Promising Cocatalyst for Superior Photocatalytic H<sub>2</sub>

# **Production Based on Swift Electron Transfer Process**

Rana Muhammad Irfan<sup>a</sup>\* Mudassir Hussain Tahir<sup>b</sup>, Shahid Iqbal<sup>c</sup>, Mubashar Nadeem<sup>d</sup>, Tariq

Bashir<sup>a</sup>, Mudassar Maqsood<sup>a</sup>, Jianqing Zhao<sup>a</sup>\*, Lijun Gao<sup>a</sup>\*

<sup>a</sup>College of Energy, Soochow Institute for Energy and Materials Innovations (SIEMIS), Soochow University, Suzhou 215006, China

<sup>b</sup>School of Power and Energy Engineering, Shandong University, Jinan 250100, China.

<sup>c</sup>Department of Chemistry and Materials Engineering, Huizhou University, Huizhou 516007,

Guangdong, China.

<sup>d</sup>Department of Material Science, Newcastle University, Newcastle Upon Tyne, NE17RU, UK.

\*To whom correspondence should be addressed E-mail: jqzhao@suda.edu.cn, gaolijun@suda.edu.cn, Tel/Fax: +86-512-65229905.

### 2. Experimental

#### 2.1. Materials

All the chemicals and reagents, including cobalt chloride (CoCl<sub>2</sub>, 98%), tetraethylene glycol (C<sub>6</sub>H<sub>14</sub>O<sub>4</sub>, 99%), cadmium chloride hemipentahydrate (CdCl<sub>2</sub>·2.5H<sub>2</sub>O, 99.0%), sodium sulfide nonahydrate (Na<sub>2</sub>S·9H<sub>2</sub>O, 99.0%) anhydrous sodium sulfate (Na<sub>2</sub>SO<sub>3</sub>, 99.0%) and thiourea (CH<sub>4</sub>N<sub>2</sub>S, 99.0%), were purchased from Sigma Aldrich and used without further purification.

#### 2.2. Synthesis of cocatalysts and photocatalysts

The highly efficient Co<sub>3</sub>C was prepared using a reported method.<sup>1</sup> Obtained Co<sub>3</sub>C was further used to prepare composite photocatalysts. Typically, 101 mg of CdS NRs were added to a 50 mL flask containing 10 mL ethanol followed by the addition of calculated amount (3 mg, 6 mg, 12 mg, 25 mg and 50 mg) of Co<sub>3</sub>C. The flask was sealed and purged with N<sub>2</sub> for 15 min to remove the air. The suspension was well dispersed using ultrasonication for 30 min. The sample was dried at 80 °C under vacuum. The obtained sample was gently ground in an agate mortar for 15 min and then annealed at 200 °C under Ar. The prepared samples were labeled as CC1, CC2, CC3, CC4 and CC5. For comparative study, similar process was performed with pure CdS NRs. Pt/CdS NRs photocatalyst was obtained through loading of 1 wt% Pt on pristine CdS NRs by a reported procedure.<sup>2</sup>

### 2.3. Photocatalytic H<sub>2</sub> production

The Photocatalytic activities of photocatalytic samples for  $H_2$  production were explored in 50 mL round bottom flask under visible light. For visible light irradiation, a 300 W Xe lamp equipped with 420 nm cut-off filter was used. The photocatalytic reaction mixtures were prepared in 20 mL Millipore water having 2.0 mg photocatalyst, Na<sub>2</sub>S/Na<sub>2</sub>SO<sub>3</sub> as sacrificial

reagent. Air from the reaction mixture was removed by  $N_2$  purging for 15 min and 5 mL methane was added as internal standard.  $H_2$  gas resulted from photocatalytic sample was quantified by gas chromatography (GC, SP-6890,  $N_2$  as carrier gas) equipped with thermal conductivity detector (TCD). A monochromatic light (420 nm) was employed for apparent quantum yields (AQYs) and calculations were performed according to the following equation:

$$AQY (\%) = \frac{number of reacted electrons}{number of incident photons} \times 100$$
  
mber of evolved H<sub>2</sub>molecules × 2

$$=\frac{number of volted H_2molecules \times 2}{number of incident photons} \times 100$$
(1)

#### 2.4. Photoelectrochemical studies

mi

Photocurrent performance of the photocatalytic samples was studied using a CHI602E work station (Shanghai Chenhua Instrument Co., Ltd, Shanghai, China). A standard three-electrode system was established using photocatalyst-coated FTO as working electrode, Ag/AgCl as reference electrode and Pt wire as counter electrode. Visible light irradiation was provided with a 300 W Xe lamp equipped with 420 nm cut-off filter. Working electrodes were prepared by adding 15 µL suspensions of CdS and Co<sub>3</sub>C/CdS NRs (20 mg/mL) onto the surface of FTO and dried at room temperature. For measurements, an applied potential of 0 V vs Ag/AgCl was used in 0.5 M Na<sub>2</sub>SO<sub>4</sub> aqueous solution as electrolyte. The polarization curves were measured using linear sweep voltammetry (LSV) with a scan rate of 5 mV/s.

### 2.5. Characterization

Morphologies of the samples were studied on scanning electron microscopy (SEM) using a JSM-6700F microscope. Transmission electron microscopy (TEM) and energy-dispersive X-ray analysis (EDX) analysis were obtained on the transmission electron microscope JEM-2010

equipped with a Rontec EDX system and electron diffraction (ED) attachment with an acceleration voltage of 200 kV. Powder X-ray diffraction analysis of the compounds was done on (XRD, D/max-TTR III) using graphite monochromatized Cu K $\alpha$  radiation of 1.54178 Å, operating at 40 kV and 200 mA. The scanning rate was 5° min<sup>-1</sup> from 20° to 80° in 20. XPS studies were performed on an ESCALAB 250 X-ray photoelectron spectrometer. ICP-AES (Optima 7300 DV) was used for the measurement of cobalt contents in photocatalysts. The steady-state photoluminescence (PL) spectra were obtained using a Perkin-Elmer LS 55 fluorescence spectrometer. UV-vis diffuse reflectance was performed on a Solid Spec-3700 UV-vis spectrometer. Time-resolved photoluminescence (TRPL) spectra were obtained on a PicoHarp 300 (PicoQuant) TRPL spectrometer.

 Table S1. ICP-AES data of Co<sub>3</sub>C/CdS samples.

| Sample | Co (wt%)/<br>ICP-AES data |  |
|--------|---------------------------|--|
| CC1    | 2.23                      |  |
| CC2    | 5.18                      |  |
| CC3    | 11.67                     |  |
| CC4    | 24.31                     |  |
| CC5    | 48.74                     |  |



**Figure S1.** Comparison of photocatalytic performance of CdS NR loaded with Pt and CC3 using 2 mg photocatalyst in 20 mL Millipore water containing 1.0 M Na<sub>2</sub>S and 1.40 M Na<sub>2</sub>SO<sub>3</sub>.

| Sr. No. | Photocatalyst                            | Rate                                    | AQY (%)       | Reference       |
|---------|------------------------------------------|-----------------------------------------|---------------|-----------------|
|         |                                          | (mmol h <sup>-1</sup> g <sup>-1</sup> ) |               |                 |
| 1       | CdS/WC                                   | 1.35                                    |               | 3               |
| 2       | CdS/Ni <sub>3</sub> C                    | 18.2                                    | 8.72 (420 nm) | 4               |
| 3       | CdS/Ti <sub>3</sub> C <sub>2</sub> Mxene | 14.34                                   | 40.1 (420 nm) | 5               |
| 4       | CdS/VC                                   | 14.2                                    | 8.7 (420 nm)  | 6               |
| 5       | CdS/Mo <sub>2</sub> C                    | 1.61                                    | 3.41 (420 nm) | 7               |
| 6       | CdS/Co <sub>3</sub> C                    | 15.75                                   | 19 (420 nm)   | Present<br>work |

**Table S2.** Comparison of photocatalytic performance of carbides/CdS based photocatalyticsystems. For better comparison, data was converted to mmol h<sup>-1</sup> g<sup>-1</sup>.



Figure S2. HRTEM image of CC3.



Figure S3. EDS elemental mapping images of CC3.



**Figure S4. (a)** XRD patterns of CC3 before (red plot) and after (black plot) irradiation. **(b)** SEM image of CC3 after irradiation. **(c)** EDX spectrum of CC3 after irradiation.



**Figure S5.** Nitrogen adsorption–desorption isotherms and corresponding pore-size distribution curves



**Figure S6.** Time-resolved photoluminescence (TRPL) spectra of CdS NRs, and  $Co_3C/CdS$  NRs at an excitation wavelength of 405 nm.

## References

- K. J. Carroll, Z. J. Huba, S. R. Spurgeon, M. Qian and S. N. Khanna, *Appl. Phys. Lett.*, 2012, **101**, 012409.
- 2. Y. Wang, Y. Wang and R. Xu, J. Phys. Chem. C, 2013, 117, 783-790.
- S. J. Jum, J. H. Dong, L. Narayanan, Y. C. Won and S. L. Jae, *Applied Catalysis A: General* 2008, 345, 149-154.
- 4. S. Ma, Y. Deng, J. Xie, K. He, W. Liu, X. Chen and X. Li, *Applied Catalysis B: Environmental*, 2018, **227**, 218-228.
- 5. J. Ran, G. Gao, F. T. Li, T. Y. Ma, A. Du and S. Z. Qiao, Nat. Commun., 2017, 8, 13907.
- 6. L. Tian, S. Min and F. Wang, *Appl. Catal.*, *B*, 2019, **259**, 118029.
- M. Baojun, X. Haojie, L. Keying, L. Jie, Z. Haijuan, L. Wanyi and L. Can, ChemSusChem, 2016, 9.