Supporting Information

Long lifetime phosphorescence and X-ray scintillation of chlorobismuthate hybrids incorporating ionic liquid cations

Jian-Ce Jin,^{a,c} Yang-Peng Lin,^b Yi-Heng Wu,^{a,c} Liao-Kuo Gong,^a Nan-Nan Shen,^a Ying Song,^d Wen Ma,^a Zhi-Zhuan Zhang,^{a,b} Ke-Zhao Du* ^b and Xiao-Ying Huang* ^a

^a State Key Laboratory of Structure Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, China.

^bCollege of Chemistry and Materials Science, Fujian Provincial Key Laboratory of Advanced Materials Oriented Chemical Engineering, Fujian Normal University, 32 Shangsan Road, Fuzhou 350007, China.

^c. University of Chinese Academy of Sciences, Bejing, 100049, China.

^dCollege of Chemistry and Materials, Nanning Normal University, Nanning, 530001, China.

E-mail: xyhuang@fjirsm.ac.cn

E-mail: duke@fjnu.edu.cn

Compound	1-290K	1-100K	2-290K	2-100K
Empirical formula	$BiCl_4C_{16}H_{19}N_4O_2$	$BiCl_4C_{16}H_{19}N_4$	$BiCl_4C_{17}H_{21}N_4$	$BiCl_4C_{17}H_{21}N_4$
Formula Mass	650.13	650.13	664.16	664.16
Crystal system	orthorhombic	orthorhombic	orthorhombic	orthorhombic
Space group	$Pca2_1$	$Pca2_1$	Pbca	Pbca
a/Å	14.6969(12)	14.4947(7)	16.4032(6)	16.2874(6)
b/Å	9.1488(9)	9.0474(6)	16.4094(6)	16.3137(6)
$c/\text{\AA}$	16.2644(12)	16.1935(7)	17.3812(7)	17.1361(7)
$V/Å^3$	2186.9(3)	2123.6(2)	4678.4(3)	4553.2(3)
Ζ	4	4	8	8
<i>T</i> /K	290(2)	100(2)	290(2)	100(2)
$\lambda/\text{\AA}$	0.71073	0.71073	0.71073	0.71073
<i>F</i> (000)	1240	1240	2544	2544
$ ho_{ m calcd}/ m g~cm^{-3}$	1.975	2.033	1.886	1.938
μ/mm^{-1}	8.569	8.825	8.014	8.234
Measured refls.	14023	18014	85265	69454
Independent refls.	5575	6679	6753	4013
No. of parameters	284	247	256	256
R _{int}	0.0364	0.0440	0.0582	0.0575
$R_1 (I \ge 2\sigma(I))^a$	0.0355	0.0371	0.0276	0.0205
$wR(F^2) (I \ge 2\sigma(I))^b$	0.0637	0.0698	0.0536	0.0494
GOF	1.003	1.006	1.024	1.015

Table S1 Crystallographic data for compound 1, 2 at 290 K and 100 K.

[a] $R_1 = \sum \|F_0\| - \|F_c\| / \sum \|F_0\|$, [b] $wR_2 = [\sum w(F_0^2 - F_c^2)^2 / \sum w(F_0^2)^2]^{1/2}$.

Fig. S1 *ORTEP* drawings (50% ellipsoid probability) of the asymmetric units of **1** at 290 K (a), at 100 K (c) and **2** at 290 K (b) and 100 K (d).

1 (290K)		1 (100K)	
Bi(1)-O(1)	2.405(7)	Bi(1)-O(1)	2.375(6)
Bi(1)-O(2)	2.389(8)	Bi(1)-O(2)	2.366(6)
Bi(1)-Cl(1)	2.650(3)	Bi(1)-Cl(1)	2.659(3)
Bi(1)- $Cl(2)$	2.690(3)	Bi(1)-Cl(2)	2.676(3)
Bi(1)-Cl(3)	2.694(4)	Bi(1)-Cl(3)	2.718(3)
Bi(1)- $Cl(4)$	2.704(4)	Bi(1)-Cl(4)	2.722(3)
O(1)-N(1)	1.309(11)	O(1)-N(1)	1.333(9)
O(2)-N(2)	1.344(12)	O(2)-N(2)	1.343(9)
N(3)-C(14)	1.434(13)	N(3)-C(14)	1.47(2)
N(4)-C(15)	1.424(12)	N(4)-C(15)	1.47(2)
C(15)-C(16)	1.44(2)	C(15)-C(16)	1.41(2)
N(4)-C(15B)	1.422(13)		
C(15B)-C(16B)	1.48(3)		
O(2)-Bi(1)-O(1)	74.7(2)	O(2)-Bi(1)-O(1)	75.52(17)
O(1)-Bi(1)-Cl(1)	83.52(19)	O(1)-Bi(1)-Cl(1)	81.97(15)
O(1)-Bi(1)-Cl(2)	87.9(2)	O(1)-Bi(1)-Cl(2)	87.84(17)

Table S2 Selected bond lengths (Å) and bond angles (°) for 1 and 2 at 290K and 100 K.

O(1) D'(1) C'(2)			
O(1) - Bi(1) - Cl(3)	89.2(2)	O(1)-Bi(1)-Cl(3)	89.91(17)
O(1)-Bi(1)-Cl(4)	162.2(2)	O(1)-Bi(1)-Cl(4)	160.77(18)
O(2)-Bi(1)-Cl(1)	88.7(2)	O(2)-Bi(1)-Cl(1)	88.00(17)
O(2)-Bi(1)-Cl(2)	83.6(2)	O(2)-Bi(1)-Cl(2)	82.61(15)
O(2)-Bi(1)-Cl(3)	163.5(2)	O(2)-Bi(1)-Cl(3)	164.82(18)
O(2)-Bi(1)-Cl(4)	88.1(2)	O(2)-Bi(1)-Cl(4)	86.06(17)
Cl(1)-Bi(1)-Cl(2)	169.70(7)	Cl(1)-Bi(1)-Cl(2)	167.61(5)
Cl(1)-Bi(1)-Cl(3)	93.35(10)	Cl(1)-Bi(1)-Cl(3)	94.25(7)
Cl(1)-Bi(1)-Cl(4)	91.48(12)	Cl(1)-Bi(1)-Cl(4)	92.05(11)
Cl(2)-Bi(1)-Cl(3)	92.23(12)	Cl(2)-Bi(1)-Cl(3)	92.76(11)
Cl(2)-Bi(1)-Cl(4)	95.00(10)	Cl(2)-Bi(1)-Cl(4)	95.34(7)
Cl(3)-Bi(1)-Cl(4)	108.22(12)	Cl(3)-Bi(1)-Cl(4)	108.83(9)
N(1)-O(1)-Bi(1)	118.4(6)	N(1)-O(1)-Bi(1)	117.6(5)
N(2)-O(2)-Bi(1)	115.5(6)	N(2)-O(2)-Bi(1)	116.7(5)
C(5)-N(1)-O(1)	121.8(12)	O(1)-N(1)-C(5)	119.6(9)
O(1)-N(1)-C(1)	119.4(10)	O(1)-N(1)-C(1)	118.8(7)
O(2)-N(2)-C(10)	119.2(10)	O(2)-N(2)-C(10)	118.9(7)
O(2)-N(2)-C(6)	118.0(13)	O(2)-N(2)-C(6)	119.8(10)
C(5)-N(1)-C(1)	118.8(13)	C(5)-N(1)-C(1)	121.6(9)
C(10)-N(2)-C(6)	122.6(14)	C(10)-N(2)-C(6)	121.2(10)
N(4)-C(15)-C(16)	125(3)	C(16)-C(15)-N(4)	115.6(18)
N(4)-C(15B)-C(16B)	121(3)		
2 (290K)		2 (100K)	
Bi(1)-O(1)	2.419(3)	Bi(1)-O(1)	2.403(2)
Bi(1)-O(2)	2.406(3)	Bi(1)-O(2)	2.388(2)
D'(1) = O'(1)	2.6500(10)	Bi(1)-Cl(1)	2.6617(9)
ы(1)-Cl(1)	2.0399(10)		
Bi(1)-Cl(1) Bi(1)-Cl(2)	2.6908(11)	Bi(1)-Cl(2)	2.6987(9)
Bi(1)-Cl(1) Bi(1)-Cl(2) Bi(1)-Cl(3)	2.6399(10) 2.6908(11) 2.6683(10)	Bi(1)-Cl(2) Bi(1)-Cl(3)	2.6987(9) 2.6831(9)
Bi(1)-Cl(2) Bi(1)-Cl(3) Bi(1)-Cl(4)	2.6399(10) 2.6908(11) 2.6683(10) 2.6551(10)	Bi(1)-Cl(2) Bi(1)-Cl(3) Bi(1)-Cl(4)	2.6987(9) 2.6831(9) 2.6679(9)
Bi(1)=Cl(1) Bi(1)=Cl(2) Bi(1)=Cl(3) Bi(1)=Cl(4) O(1)=N(1)	2.6399(10) 2.6908(11) 2.6683(10) 2.6551(10) 1.331(4)	Bi(1)-Cl(2) Bi(1)-Cl(3) Bi(1)-Cl(4) O(1)-N(1)	2.6987(9) 2.6831(9) 2.6679(9) 1.341(4)
Bi(1)-Cl(1) Bi(1)-Cl(2) Bi(1)-Cl(3) Bi(1)-Cl(4) O(1)-N(1) O(2)-N(2)	2.6399(10) 2.6908(11) 2.6683(10) 2.6551(10) 1.331(4) 1.329(4)	Bi(1)-Cl(2) Bi(1)-Cl(3) Bi(1)-Cl(4) O(1)-N(1) O(2)-N(2)	2.6987(9) 2.6831(9) 2.6679(9) 1.341(4) 1.332(4)
Bi(1)-Cl(1) Bi(1)-Cl(2) Bi(1)-Cl(3) Bi(1)-Cl(4) O(1)-N(1) O(2)-N(2) N(3)-C(14)	2.6399(10) 2.6908(11) 2.6683(10) 2.6551(10) 1.331(4) 1.329(4) 1.461(6)	Bi(1)-Cl(2) Bi(1)-Cl(3) Bi(1)-Cl(4) O(1)-N(1) O(2)-N(2) N(3)-C(14)	2.6987(9) 2.6831(9) 2.6679(9) 1.341(4) 1.332(4) 1.464(5)
B1(1)-Cl(1) Bi(1)-Cl(2) Bi(1)-Cl(3) Bi(1)-Cl(4) O(1)-N(1) O(2)-N(2) N(3)-C(14) N(4)-C(16)	2.6399(10) $2.6908(11)$ $2.6683(10)$ $2.6551(10)$ $1.331(4)$ $1.329(4)$ $1.461(6)$ $1.493(6)$	Bi(1)-Cl(2) Bi(1)-Cl(3) Bi(1)-Cl(4) O(1)-N(1) O(2)-N(2) N(3)-C(14) N(4)-C(16)	2.6987(9) 2.6831(9) 2.6679(9) 1.341(4) 1.332(4) 1.464(5) 1.470(5)
Bi(1)-Cl(1)Bi(1)-Cl(2)Bi(1)-Cl(3)Bi(1)-Cl(4)O(1)-N(1)O(2)-N(2)N(3)-C(14)N(4)-C(16)C(13)-C(15)	2.6339(10) $2.6908(11)$ $2.6683(10)$ $2.6551(10)$ $1.331(4)$ $1.329(4)$ $1.461(6)$ $1.493(6)$ $1.465(6)$	Bi(1)-Cl(2) Bi(1)-Cl(3) Bi(1)-Cl(4) O(1)-N(1) O(2)-N(2) N(3)-C(14) N(4)-C(16) C(13)-C(15)	2.6987(9) $2.6831(9)$ $2.6679(9)$ $1.341(4)$ $1.332(4)$ $1.464(5)$ $1.470(5)$ $1.476(5)$
Bi(1)-Cl(1) Bi(1)-Cl(2) Bi(1)-Cl(3) Bi(1)-Cl(4) O(1)-N(1) O(2)-N(2) N(3)-C(14) N(4)-C(16) C(13)-C(15) C(16)-C(17)	2.6399(10) $2.6908(11)$ $2.6683(10)$ $2.6551(10)$ $1.331(4)$ $1.329(4)$ $1.461(6)$ $1.493(6)$ $1.465(6)$ $1.464(8)$	Bi(1)-Cl(2)Bi(1)-Cl(3)Bi(1)-Cl(4)O(1)-N(1)O(2)-N(2)N(3)-C(14)N(4)-C(16)C(13)-C(15)C(16)-C(17)	2.6987(9) $2.6831(9)$ $2.6679(9)$ $1.341(4)$ $1.332(4)$ $1.464(5)$ $1.470(5)$ $1.476(5)$ $1.507(6)$
Bi(1)-CI(1) Bi(1)-CI(2) Bi(1)-CI(3) Bi(1)-CI(4) O(1)-N(1) O(2)-N(2) N(3)-C(14) N(4)-C(16) C(13)-C(15) C(16)-C(17) O(2)-Bi(1)-O(1)	2.6399(10) $2.6908(11)$ $2.6683(10)$ $2.6551(10)$ $1.331(4)$ $1.329(4)$ $1.461(6)$ $1.493(6)$ $1.465(6)$ $1.465(6)$ $1.464(8)$ $76.17(8)$	Bi(1)-Cl(2)Bi(1)-Cl(3)Bi(1)-Cl(4)O(1)-N(1)O(2)-N(2)N(3)-C(14)N(4)-C(16)C(13)-C(15)C(16)-C(17)O(2)-Bi(1)-O(1)	2.6987(9) 2.6831(9) 2.6679(9) 1.341(4) 1.332(4) 1.464(5) 1.470(5) 1.476(5) 1.507(6) 76.91(8)
Bi(1)-CI(1) Bi(1)-CI(2) Bi(1)-CI(3) Bi(1)-CI(4) O(1)-N(1) O(2)-N(2) N(3)-C(14) N(4)-C(16) C(13)-C(15) C(16)-C(17) O(2)-Bi(1)-O(1) O(1)-Bi(1)-CI(1)	2.6399(10) $2.6908(11)$ $2.6683(10)$ $2.6551(10)$ $1.331(4)$ $1.329(4)$ $1.461(6)$ $1.493(6)$ $1.465(6)$ $1.465(6)$ $1.464(8)$ $76.17(8)$ $79.51(6)$	Bi(1)-Cl(2) Bi(1)-Cl(3) Bi(1)-Cl(4) O(1)-N(1) O(2)-N(2) N(3)-C(14) N(4)-C(16) C(13)-C(15) C(16)-C(17) O(2)-Bi(1)-O(1) O(1)-Bi(1)-Cl(1)	2.6987(9) 2.6831(9) 2.6679(9) 1.341(4) 1.332(4) 1.464(5) 1.470(5) 1.470(5) 1.476(5) 1.507(6) 76.91(8) 78.47(6)
Bi(1)-CI(1) Bi(1)-CI(2) Bi(1)-CI(3) Bi(1)-CI(4) O(1)-N(1) O(2)-N(2) N(3)-C(14) N(4)-C(16) C(13)-C(15) C(16)-C(17) O(2)-Bi(1)-O(1) O(1)-Bi(1)-CI(1) O(1)-Bi(1)-CI(2)	2.6399(10) $2.6908(11)$ $2.6683(10)$ $2.6551(10)$ $1.331(4)$ $1.329(4)$ $1.461(6)$ $1.493(6)$ $1.465(6)$ $1.465(6)$ $1.464(8)$ $76.17(8)$ $79.51(6)$ $89.52(7)$	Bi(1)-Cl(2) Bi(1)-Cl(3) Bi(1)-Cl(4) O(1)-N(1) O(2)-N(2) N(3)-C(14) N(4)-C(16) C(13)-C(15) C(16)-C(17) O(2)-Bi(1)-O(1) O(1)-Bi(1)-Cl(1) O(1)-Bi(1)-Cl(2)	2.6987(9) 2.6831(9) 2.6679(9) 1.341(4) 1.332(4) 1.464(5) 1.470(5) 1.476(5) 1.507(6) 76.91(8) 78.47(6) 88.80(6)
Bi(1)-CI(1) $Bi(1)-CI(2)$ $Bi(1)-CI(3)$ $Bi(1)-CI(4)$ $O(1)-N(1)$ $O(2)-N(2)$ $N(3)-C(14)$ $N(4)-C(16)$ $C(13)-C(15)$ $C(16)-C(17)$ $O(2)-Bi(1)-O(1)$ $O(1)-Bi(1)-CI(1)$ $O(1)-Bi(1)-CI(2)$ $O(1)-Bi(1)-CI(3)$	2.6399(10) $2.6908(11)$ $2.6683(10)$ $2.6551(10)$ $1.331(4)$ $1.329(4)$ $1.461(6)$ $1.493(6)$ $1.465(6)$ $1.465(6)$ $1.464(8)$ $76.17(8)$ $79.51(6)$ $89.52(7)$ $97.10(7)$	Bi(1)-Cl(2) $Bi(1)-Cl(3)$ $Bi(1)-Cl(4)$ $O(1)-N(1)$ $O(2)-N(2)$ $N(3)-C(14)$ $N(4)-C(16)$ $C(13)-C(15)$ $C(16)-C(17)$ $O(2)-Bi(1)-O(1)$ $O(1)-Bi(1)-Cl(1)$ $O(1)-Bi(1)-Cl(2)$ $O(1)-Bi(1)-Cl(3)$	2.6987(9) 2.6831(9) 2.6679(9) 1.341(4) 1.332(4) 1.464(5) 1.470(5) 1.476(5) 1.507(6) 76.91(8) 78.47(6) 88.80(6) 98.00(6)
Bi(1)-CI(1) $Bi(1)-CI(2)$ $Bi(1)-CI(3)$ $Bi(1)-CI(4)$ $O(1)-N(1)$ $O(2)-N(2)$ $N(3)-C(14)$ $N(4)-C(16)$ $C(13)-C(15)$ $C(16)-C(17)$ $O(2)-Bi(1)-O(1)$ $O(1)-Bi(1)-CI(1)$ $O(1)-Bi(1)-CI(2)$ $O(1)-Bi(1)-CI(3)$ $O(1)-Bi(1)-CI(4)$	2.6399(10) $2.6908(11)$ $2.6683(10)$ $2.6551(10)$ $1.331(4)$ $1.329(4)$ $1.461(6)$ $1.493(6)$ $1.465(6)$ $1.465(6)$ $1.464(8)$ $76.17(8)$ $79.51(6)$ $89.52(7)$ $97.10(7)$ $162.92(7)$	$\begin{array}{c} \text{Bi}(1)-\text{Cl}(2)\\ \text{Bi}(1)-\text{Cl}(3)\\ \text{Bi}(1)-\text{Cl}(4)\\ \text{O}(1)-\text{N}(1)\\ \text{O}(2)-\text{N}(2)\\ \text{N}(3)-\text{C}(14)\\ \text{N}(4)-\text{C}(16)\\ \text{C}(13)-\text{C}(15)\\ \text{C}(16)-\text{C}(17)\\ \end{array}$	2.6987(9) 2.6831(9) 2.6679(9) 1.341(4) 1.332(4) 1.464(5) 1.470(5) 1.476(5) 1.507(6) 76.91(8) 78.47(6) 88.80(6) 98.00(6) 162.37(6)
Bi(1)-CI(1) $Bi(1)-CI(2)$ $Bi(1)-CI(3)$ $Bi(1)-CI(4)$ $O(1)-N(1)$ $O(2)-N(2)$ $N(3)-C(14)$ $N(4)-C(16)$ $C(13)-C(15)$ $C(16)-C(17)$ $O(2)-Bi(1)-O(1)$ $O(1)-Bi(1)-CI(1)$ $O(1)-Bi(1)-CI(2)$ $O(1)-Bi(1)-CI(3)$ $O(1)-Bi(1)-CI(4)$ $O(2)-Bi(1)-CI(1)$	2.6399(10) 2.6908(11) 2.6683(10) 2.6551(10) 1.331(4) 1.329(4) 1.461(6) 1.493(6) 1.465(6) 1.465(6) 1.464(8) 76.17(8) 79.51(6) 89.52(7) 97.10(7) 162.92(7) 90.88(7)	$\begin{array}{c} \text{Bi}(1)-\text{Cl}(2)\\ \text{Bi}(1)-\text{Cl}(3)\\ \text{Bi}(1)-\text{Cl}(3)\\ \text{Bi}(1)-\text{Cl}(4)\\ O(1)-\text{N}(1)\\ O(2)-\text{N}(2)\\ \text{N}(3)-\text{C}(14)\\ \text{N}(3)-\text{C}(14)\\ \text{N}(4)-\text{C}(16)\\ \text{C}(13)-\text{C}(15)\\ \text{C}(13)-\text{C}(15)\\ \text{C}(16)-\text{C}(17)\\ \end{array}$	2.6987(9) 2.6831(9) 2.6679(9) 1.341(4) 1.332(4) 1.464(5) 1.470(5) 1.476(5) 1.507(6) 76.91(8) 78.47(6) 88.80(6) 98.00(6) 162.37(6) 91.11(6)
Bi(1)-CI(1) $Bi(1)-CI(2)$ $Bi(1)-CI(3)$ $Bi(1)-CI(4)$ $O(1)-N(1)$ $O(2)-N(2)$ $N(3)-C(14)$ $N(4)-C(16)$ $C(13)-C(15)$ $C(16)-C(17)$ $O(2)-Bi(1)-O(1)$ $O(1)-Bi(1)-CI(1)$ $O(1)-Bi(1)-CI(2)$ $O(1)-Bi(1)-CI(3)$ $O(1)-Bi(1)-CI(4)$ $O(2)-Bi(1)-CI(1)$ $O(2)-Bi(1)-CI(1)$ $O(2)-Bi(1)-CI(2)$	2.6399(10) 2.6908(11) 2.6683(10) 2.6551(10) 1.331(4) 1.329(4) 1.461(6) 1.493(6) 1.465(6) 1.465(6) 1.464(8) 76.17(8) 79.51(6) 89.52(7) 97.10(7) 162.92(7) 90.88(7) 80.72(7)	$\begin{array}{c} \text{Bi}(1)-\text{Cl}(2)\\ \text{Bi}(1)-\text{Cl}(3)\\ \text{Bi}(1)-\text{Cl}(4)\\ \text{O}(1)-\text{N}(1)\\ \text{O}(2)-\text{N}(2)\\ \text{N}(3)-\text{C}(14)\\ \text{N}(4)-\text{C}(16)\\ \text{C}(13)-\text{C}(15)\\ \text{C}(13)-\text{C}(15)\\ \text{C}(16)-\text{C}(17)\\ \end{array}$	2.6987(9) 2.6831(9) 2.6679(9) 1.341(4) 1.332(4) 1.464(5) 1.470(5) 1.476(5) 1.507(6) 76.91(8) 78.47(6) 88.80(6) 98.00(6) 162.37(6) 91.11(6) 80.04(6)

O(2) - Bi(1) - Cl(4)	90.81(6)	O(2)-Bi(1)-Cl(4)	90.06(6)
Cl(1)-Bi(1)-Cl(2)	167.55(4)	Cl(1)-Bi(1)-Cl(2)	165.92(3)
Cl(1)-Bi(1)-Cl(3)	96.98(3)	Cl(1)-Bi(1)-Cl(3)	97.52(3)
Cl(3)-Bi(1)-Cl(2)	90.15(3)	Cl(3)-Bi(1)-Cl(2)	90.13(3)
Cl(4)-Bi(1)-Cl(1)	89.85(3)	Cl(1)-Bi(1)-Cl(4)	90.12(3)
Cl(4)-Bi(1)-Cl(2)	99.37(4)	Cl(4)-Bi(1)-Cl(2)	100.74(3)
Cl(4)-Bi(1)-Cl(3)	97.42(3)	Cl(4)-Bi(1)-Cl(3)	96.78(3)
N(1)-O(1)-Bi(1)	115.61(19)	N(1)-O(1)-Bi(1)	115.31(19)
N(2)-O(2)-Bi(1)	118.7(2)	N(2)-O(2)-Bi(1)	118.4(2)
O(1)-N(1)-C(1)	119.6(3)	O(1)-N(1)-C(1)	119.3(3)
O(1)-N(1)-C(5)	119.5(3)	O(1)-N(1)-C(5)	119.2(3)
O(2)-N(2)-C(6)	119.5(3)	O(2)-N(2)-C(6)	119.4(3)
O(2)-N(2)-C(10)	119.8(3)	O(2)-N(2)-C(10)	119.2(3)
C(1)-N(1)-C(5)	120.8(3)	C(1)-N(1)-C(5)	121.5(3)
C(10)-N(2)-C(6)	120.7(3)	C(10)-N(2)-C(6)	121.4(3)
C(17)-C(16)-N(4)	110.4(5)	N(4)-C(16)-C(17)	112.8(3)

D−H···A	D-H (Å)	H…A (Å)	D…A (Å)	<(DHA) (°)
1-290 K				
H-bond in anions				
$C(1) - H(1A) \cdots Cl(1) # 1$	0.93	2.87	3.507(13)	126.6
$C(2) - H(2A) \cdots Cl(1) #1$	0.93	2.94	3.53(3)	123.3
$C(2) - H(2A) \cdots Cl(4) \# 1$	0.93	2.90	3.70(3)	145.0
$C(4) - H(4A) \cdots Cl(4) #2$	0.93	2.90	3.624(12)	135.8
$C(7) - H(7A) \cdots Cl(1) #3$	0.93	2.96	3.614(11)	128.9
C(7)−H(7A)···Cl(3)#3	0.93	2.83	3.588(14)	139.5
C(9)-H(9A)····Cl(3)#4	0.93	2.79	3.64(3)	152.5
C(10)-H(10A)····Cl(2)#4	0.93	2.83	3.501(11)	129.8
H-bonds between anions and ca	tions			
C(11)−H(11A)····O(1)#3	0.93	2.58	3.393(19)	146.0
C(13)−H(13A)····Cl(4)#5	0.93	2.80	3.71(2)	166.0
C(14^a)-H(14B^a)Cl(3)#6	0.96	2.66	3.60(6)	166.9
C(16 ^a)-H(16C ^a)O(2)#5	0.96	2.54	3.40(3)	149.3
C(14B^b)-H(14E^b)Cl(3)#6	0.96	2.90	3.85(13)	172.7
C(15B^b)-H(15D^b)Cl(1)#7	0.97	2.69	3.36(9)	126.4
Symmetry transformations used to	o generate equi	valent atoms:		
#1 - <i>x</i> +1/2, <i>y</i> , <i>z</i> +1/2; #2 <i>x</i> +1/2, - <i>y</i> +	1, <i>z</i> ; #3 <i>x</i> +1/2,	- <i>y</i> , <i>z</i> ; #4 - <i>x</i> +1/2,	<i>y</i> , <i>z</i> -1/2; #5 - <i>x</i> +	·1, - <i>y</i> +1, <i>z</i> +1/2
#6 x+1, v, z; #7 -x+1, -v, z+1/2.				

H-bond in anions					
C(1)-H(1A)···Cl(1)#1	0.95	2.83	3.460(9)	124.9	
C(2)-H(2A)···Cl(1)#1	0.95	2.86	3.467(15)	122.5	
C(2)-H(2A)···Cl(4)#1	0.95	2.79	3.597(14)	142.9	

C(4)−H(4A)···Cl(2)#2	0.95	2.97	3.571(9)	122.8
$C(4)-H(4A)\cdots Cl(4)#2$	0.95	2.87	3.607(9)	135.7
$C(7)-H(7A)\cdots Cl(1)#3$	0.95	2.90	3.548(10)	126.3
C(7)-H(7A)···Cl(3)#3	0.95	2.81	3.554(9)	135.4
C(9)-H(9A)···Cl(2)#4	0.95	2.95	3.550(16)	122.2
C(9)-H(9A)···Cl(3)#4	0.95	2.75	3.610(17)	151.0
C(10)-H(10A)····Cl(2)#4	0.95	2.82	3.481(9)	127.6
H-bonds between anions and	cations			
C(11)-H(11A)····O(1)#3	0.95	2.64	3.435(15)	141.2
C(12)-H(12A)····Cl(3)#3	0.95	2.97	3.726(14)	137.6
C(13)-H(13A)····Cl(4)#5	0.95	2.80	3.694(15)	157.5
C(14)-H(14B)····Cl(2)#2	0.98	2.80	3.499(14)	129.0
C(14)-H(14C)····Cl(3)#6	0.98	2.81	3.784(15)	172.8
C(15)-H(15A)····Cl(4)#1	0.99	2.85	3.800(17)	160.2
C(16)-H(16C)····O(2)#5	0.98	2.40	3.361(13)	165.0
Symmetry transformations use	d to generate eq	uivalent atoms		
#1 - <i>x</i> +1/2, <i>y</i> , <i>z</i> +1/2; #2 <i>x</i> +1/2, -	y+1, z; #3 x+1/2	2, - <i>y</i> , <i>z</i> ; #4 - <i>x</i> +1	/2, <i>y</i> , <i>z</i> -1/2; #5 - <i>x</i> +	-1, <i>-y</i> +1, <i>z</i> +1
#6 <i>x</i> +1, <i>y</i> , <i>z</i> .		• • •	• • •	
2-290 K				
H-bonds in anion				
C(2)-H(2)···Cl(1)#1	0.93	2.97	3.639(4)	130.5
C(2)-H(2)···Cl(4)#1	0.93	2.74	3.559(4)	147.3
C(4)−H(4)····Cl(4)#2	0.93	2.83	3.460(4)	125.6
C(7)-H(7)····Cl(3)#3	0.93	2.76	3.582(4)	148.3
C(9)−H(9)···Cl(2)#4	0.93	2.93	3.542(4)	124.3
C(9)−H(9)···Cl(3)#4	0.93	2.74	3.585(4)	151.8
H-bonds between anions and	cations		~ /	
C(14)–H(14B)····Cl(4)#2	0.96	2.79	3.629(6)	146.4
$C(14)-H(14C)\cdots O(1)\#5$	0.96	2.52	3.260(7)	133.6
$C(15)-H(15A)\cdots Cl(4)$	0.96	2.80	3.761(5)	179.0
$C(15)-H(15C)\cdots Cl(3)\#5$	0.96	2.80	3.752(5)	171.0
$C(16) - H(16B) \cdots Cl(2) \# 4$	0.97	2.92	3 840(6)	158.4
$C(17) - H(17C) \cdots Cl(1) \# 6$	0.96	2.92	3 811(6)	168 7
Symmetry transformations use	d to generate eq	∠.07 uivalent atoma	5.011(0)	100.7
#1 -r+1/2 ν +1/2 τ #2 r+1/2 =	$v + 3/2 = -7 + 1 \cdot \# 3$	x+1/2 v = -7+1/2	· 2· #4 _r+1/2 _v_1/2) 7 · #5 r _1>
$r = \frac{1}{2}, y = \frac{1}{2}, z, \frac{1}{2}, \frac{1}{2},$	y · J/2, -2 · 1, #J	x + 1/2, y, -2 + 1/2	$2, \pi \pi - \lambda + 1/2, y = 1/2$	<i>-, -, πJ λ</i> , <i>−y</i> [¬]
$\omega \cdot 1/\omega, 1 0 \mathbf{A} \cdot 1/\omega, 1/1, 2 \cdot 1/1.$				
2-100 K				
2-100 K H-bonds in anion				
2-100 K H-bonds in anion	0.05	2 88	3 583(1)	121 2
2-100 K H-bonds in anion C(2)-H(2)···Cl(1)#1 C(2)-H(2)···Cl(4)#1	0.95	2.88	3.583(4)	131.3
2-100 K H-bonds in anion C(2)-H(2)···Cl(1)#1 C(2)-H(2)···Cl(4)#1 C(4)-H(4)-Cl(4)#2	0.95 0.95	2.88 2.69	3.583(4) 3.501(4)	131.3 143.5
2-100 K H-bonds in anion $C(2)-H(2)\cdots Cl(1)\#1$ $C(2)-H(2)\cdots Cl(4)\#1$ $C(4)-H(4)\cdots Cl(4)\#2$ C(7) - H(7) - Cl(2)#2	0.95 0.95 0.95	2.88 2.69 2.78	3.583(4) 3.501(4) 3.409(4)	131.3 143.5 124.3
2-100 K H-bonds in anion $C(2)-H(2)\cdots Cl(1)\#1$ $C(2)-H(2)\cdots Cl(4)\#1$ $C(4)-H(4)\cdots Cl(4)\#2$ $C(7)-H(7)\cdots Cl(3)\#3$ C(0) H(0) = Cl(2)#4	0.95 0.95 0.95 0.95	2.88 2.69 2.78 2.72	3.583(4) 3.501(4) 3.409(4) 3.540(4)	131.3 143.5 124.3 145.1
2-100 K H-bonds in anion $C(2)-H(2)\cdots Cl(1)\#1$ $C(2)-H(2)\cdots Cl(4)\#1$ $C(4)-H(4)\cdots Cl(4)\#2$ $C(7)-H(7)\cdots Cl(3)\#3$ $C(9)-H(9)\cdots Cl(2)\#4$	0.95 0.95 0.95 0.95 0.95	2.88 2.69 2.78 2.72 2.86	3.583(4) 3.501(4) 3.409(4) 3.540(4) 3.477(4)	131.3 143.5 124.3 145.1 123.5

C(10)−H(10)····Cl(2)#4	0.95	2.97	3.530(4)	119.4	
H-bonds between anions and	cations				
C(11)−H(11)····Cl(3)#2	0.95	2.98	3.639(4)	127.6	
C(14)-H(14B)Cl(4)#2	0.98	2.84	3.622(4)	137.3	
C(14)-H(14C)····O(1)#5	0.98	2.48	3.180(5)	127.8	
$C(15)-H(15A)\cdots Cl(4)$	0.98	2.73	3.703(4)	172.2	
$C(15)-H(15B)\cdots Cl(2)$	0.98	2.95	3.659(4)	129.9	
C(15)-H(15C)····Cl(3)#5	0.98	2.77	3.731(4)	166.7	
C(16)-H(16A)Cl(2)#4	0.99	2.86	3.797(4)	157.5	
$C(16)-H(16B)\cdots Cl(4)$	0.99	2.96	3.942(4)	171.1	
C(17)-H(17C)Cl(1)#6	0.98	2.84	3.792(4)	162.9	

Symmetry transformations used to generate equivalent atoms:

#1 -*x*+1/2, *y*+1/2, *z*; #2 *x*+1/2, -*y*+3/2, -*z*+1; #3 *x*+1/2, *y*, -*z*+1/2; #4 -*x*+1/2, *y*-1/2, *z*; #5 *x*, -*y*+3/2, *z*+1/2; #6 -*x*+1/2, -*y*+1, *z*+1/2.

Fig. S2 The view of C–H··· π interactions (lime dotted line) for 1 at 290 K between anions and cations.

Fig. S3 The view of anion $\cdots \pi$ interactions (orange dotted line) for 1 at 290 K between anions and cations and between anions and cations.

Table 54. Selected weak interaction data for T at 270 K.					
$Y-X(I)\cdots Cg(J)$	ARU(J)	X…Cg(Å)	$<$ Y $-$ X \cdots Cg(°)	Y…Cg(Å)	Y−X, Pi
C–H··· π interactions					
C(14B)- $H(14D)$ - $Cg(3)$	4565.02	2.98	130	3.68(11)	61.00
C(16B)- $H(16E)$ - $Cg(4)$	2655.02	2.79	129	3.48(7)	35.00
anion $\cdot\cdot\cdot\pi$ interactions					
Bi(1)- $Cl(1)$ - $Cg(1)$	2654.01	3.723(10)	162.58(19)	6.302(10)	51.67
Bi(1)- $Cl(1)$ - $Cg(2)$	2654.01	3.755(17)	162.4(3)	6.331(16)	48.25
Bi(1)- $Cl(2)$ - $Cg(1)$	4465.01	3.631(10)	153.55(19)	6.157(10)	52.33
Bi(1)- $Cl(2)$ - $Cg(2)$	4465.01	3.599(17)	153.6(3)	6.127(16)	48.98
Bi(1)- $Cl(3)$ - $Cg(3)$	4455.02	3.662(7)	158.98(17)	6.252(6)	55.71
Bi(1)- $Cl(4)$ - $Cg(4)$	4465.02	3.649(7)	159.35(17)	6.252(7)	55.65

Table S4. Selected weak interaction data for 1 at 290 K

Cg(1): N(3)→C(11)→C(12)→N(4)→C(13). Cg(2): N(4)→C(12)→C(11)→N(3B)→C(13). Cg(3): N(1)→C(1)→C(2)→C(3)→C(4)→C(5). Cg(4): N(2)→C(6)→C(7)→C(8)→C(9)→C(10). [4565] = 1/2+x, 1-y, z. [2655] = 1-x, -y, 1/2+z. [2654] = 1-x, -y, -1/2+z. [4465] = -1/2+x, 1-y, z. [4455] = -1/2+x, 1-y, z. Notably, the ethyl chain in $[\text{Emim}]^+$ of **1** follows statistical distribution at 290 K. The disorder in cation for **1** leads to additional weak interactions (Table S4):

- 1) **anion**... π interactions: another two anion... π interactions exist between Cl atoms (Cl(1) and Cl(2)) and imidazole ring.
- 2) C-H··· π interactions: 1 also possesses additional C-H··· π interactions with the distance of 2.98 and 2.79 Å between two pyridine rings from anion and the alkyl chain in cation (Fig. S2).

Fig. S4 The view of anion π interactions (orange dotted line) for 2 at 290 K in the anionic part.

Table S5. Selected weak interaction data for 2 at 290 K.					
$Y-X(I)\cdots Cg(J)$	ARU(J)	X…Cg(Å)	$<$ Y $-$ X \cdots Cg(°)	Y…Cg(Å)	Y–X, Pi
anion $\cdots \pi$ interactions					
Bi(1)- $Cl(2)$ - $Cg(1)$	1555.01	3.741(2)	82.62(4)	4.3185(16)	25.03
Bi(1)- $Cl(3)$ - $Cg(1)$	6455.01	3.5707(19)	156.38(4)	6.1098(16)	54.57
$Cg(1): N(1) \rightarrow C(1) \rightarrow C(2)$	$\rightarrow C(3) \rightarrow C(4)$	\rightarrow C(5). Cg(2)	$N(2) \rightarrow C(6) \rightarrow C$	$C(7) \rightarrow C(8) \rightarrow C(8)$	(9)→C(10).
$Cg(3): N(3) \rightarrow C(11)$ -	$\rightarrow C(12) \rightarrow N(4)$	4)→C(13). [15	55] = x, y, z. [645	[55] = -1/2 + x, y,	1/2- <i>z</i> .

Table S5. Selected weak interaction data for 2 at 290 K.

$Y-X(I)\cdots Cg(J)$	ARU(J)	$X{\cdots}Cg({\mathring{A}})$	$<$ Y $-$ X \cdots Cg(°)	Y…Cg(Å)	Y−X, Pi
anion $\cdot\cdot\cdot\pi$ interactions					
Bi(1)- $Cl(1)$ - $Cg(3)$	2654.02	3.557(6)	161.09(13)	6.133(6)	52.96
Bi(1)- $Cl(2)$ - $Cg(3)$	4465.02	3.686(6)	157.54(13)	6.243(6)	53.28
Bi(1)- $Cl(3)$ - $Cg(1)$	4455.01	3.565(5)	157.30(12)	6.163(4)	55.74
Bi(1)- $Cl(4)$ - $Cg(2)$	4465.01	3.553(5)	158.17(12)	6.164(5)	54.65
$Cg(1): N(1) \rightarrow C(1) \rightarrow C(2)$	$\rightarrow C(3) \rightarrow C(4)$	\rightarrow C(5). Cg(2)	$N(2) \rightarrow C(6) \rightarrow C$	$C(7) \rightarrow C(8) \rightarrow C$	$C(9) \rightarrow C(10).$
$Cg(3): N(3) \rightarrow C(11) \rightarrow C(11)$	C(12)→N(4)-	•C(13). [2654]	=1-x, -y, -1/2+z.	[4465] = -1/2	+ <i>x</i> , 1- <i>y</i> , <i>z</i> .

Table S6. Selected weak interaction data for 1 at 100 K.

[4455] = -1/2+x, -y, z. [4465] = -1/2+x, 1-y, z.

Fig. S5 Topological structures of **1** (a) and **2** (b) created by linking adjacent Bi atoms. Both compounds exhibit **pcu** topological structure. The distances of adjacent Bi atoms are 8.441, 8.565, 8.750 for **1** and 8.700, 8.705, 8.873 for **2**.

Fig. S6 PXRD patterns of 1.

Fig. S9 TG curve of 2.

Fig. S10 The electronic band structure of 1 (a) and 2 (b). The calculated bandgap is 1.332 for 1 and 1.281 eV for 2.

Fig. S11 Density of states (DOSs) for 2. The $C_{10}N_2O_2H_8$ represents the bp2do organic ligand and the $C_7N_2H_{13}$ represents the [Emmim]⁺ cation.

Fig. S12 The molecular orbitals of **2** showing the highest occupied molecular orbital (a, HOMO) and the lowest occupied molecular orbital (b, LUMO). The isosurface values are 0.02.

Fig. S13 (a) Photographs of 1 under daylight (left) and UV light (right). (b) Photographs of 2 under daylight (left) and UV light (right).

Fig. S14 PL decay spectra of **1** at 77 K (a) and 298 K (b). The data could be fitted well by biexponential function. The average lifetime is 0.0975 s at 77 K ($\tau 1 = 0.474$ s, 14.20%; $\tau 2 = 0.0351$ s, 85.80%) and 0.0998 s at 298 K ($\tau 1 = 0.0364$ s, 85.90%; $\tau 2 = 0.486$ s, 14.10%), respectively.

Fig. S15 PL decay spectra of 2 at 77 K (a) and 298 K (b). The data could be fitted well by biexponential function. The average lifetime is 0.165 s at 77 K ($\tau 1 = 0.338$ s, 43.30%; $\tau 2 = 0.0331$ s, 56.70%) and 0.176 s at 298 K ($\tau 1 = 0.385$ s, 40.30%; $\tau 2 = 0.0349$ s, 59.70%), respectively.

Fig. S16 The temperature-dependent CIE (1931) chromaticity coordinates of 1 (a) and 2 (b) from 77 K to 298 K.

 Table S8 The distortion of bismuth-chloride/oxygen bonds and angles for 1 and 2 at 290 K and

 100 K

100 K .						
Compound	D	λ_{oct}	σ^2			
1-290 K	0.04929	1.0219	63.88			
1-100 K	0.05552	1.0246	69.64			
2-290 K	0.04414	1.0187	57.38			
2-100 K	0.04851	1.0206	62.55			

Fig. S17 Normalized emission spectra of 1 and 2 at 290 K and 77 K. The excitation wavelength is 410 nm for 1 and 430 nm for 2.

Fig. S18 Comparison of normalized PL spectra for **1** under different excited resources at RT. The black solid line is under X-ray excitation while the red solid line is under 410 nm UV excitation.

Fig. S19 Comparison of normalized PL spectra for **2** under different excited resources at RT. The black solid line is under X-ray excitation while the red solid line is under 430 nm UV excitation.

Fig. S20 X-ray excited PL spectra of 1 at RT. Mo anode was used as X-ray resource. The power is 3 W (50 kV, 60 μA) in red solid line and 5 W (50 kV, 100 μA) in blue solid line.

Fig. S21 X-ray excited PL spectra of **2** at RT. Mo anode was used as X-ray resource. The power is 3 W (50 kV, 60 μA) in red solid line and 5 W (50 kV, 100 μA) in blue solid line.