Lead-free Zero Dimensional Tellurium (IV) Chloride-Organic Hybrid with Strong Room Temperature Emission as Luminescent Material

Anupam Biswas,^[1,2] Rangarajan Bakthavatsalam,^[1,2] Vir Bahadur,^[1,2] Chinmoy Biswas,^[3] Bhupendra P. Mali,^[1,2] Sai Santosh Kumar Raavi,^[3] Rajesh G. Gonnade,^[1,2] and Janardan Kundu^{*,[4]}

^[1,2] CSIR-National Chemical Laboratory, Pune, India.

Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India.

^[3] Indian Institute of Technology Hyderabad, Kandi, India.

^[4] Indian Institute of Science Education and Research (IISER) Tirupati, Tirupati, India.

Figure S1: XPS spectra of $(BzTEA)_2 TeCl_6$ crystals showing the presence of Chloride anion and Te(IV) metal centre.

Figure S2: 1H NMR spectra of (a) benzyltriethylammonium chloride and (b) (BzTEA)₂TeCl₆ product in DMSO-D6.

Figure S3: Tauc plot of (BzTEA)₂TeCl₆ single crystals showing the direct band gap energy estimation.

Figure S4: Lifetime decay profile of (BzTEA)₂TeCl₆ crystals collected across the broad emission band when excited with 440 nm source. Table lists the fitted lifetimes, their relative weights and average lifetime.

Figure S5: Optical characterization of Te based perovskite with tris(2-aminoethyl)amine (a-c), and tetraethylammonium chloride (d-f) organic ligands showing absorbance, photoluminescence, and photoluminescence excitation, excitation wavelength dependent PL, and PLE across the broad emission band.

Figure S6: Comparison photograph of Te based perovskite with (1) Benzyltriethylammonium chloride and (2) tetraethylammonium chloride organic ligands under UV illumination.

$$\lambda_{\text{oct}} = \frac{1}{6} \sum_{n=1}^{6} \left[\left(d_n - d_0 \right) / d_0 \right]^2; \ \sigma^2 = \frac{1}{11} \sum_{n=1}^{12} \left(\theta_n - 90^\circ \right)^2$$

Figure S7: Site symmetry of the TeCl₆ octahedron showing various bond angles. Mathematical representation of quadratic elongation (λ_{oct}) and bond angle variance (σ^2) is also shown.

Figure S8: a) Excitation dependent a) PL and b) PLE collected across the broad emission band for $(BzTEA)_2TeCl_6$ crystals.

Figure S9: Comparison of the PL and PLE profile for $(BzTEA)_2TeCl_6$ before and after grinding of the crystals.

Figure S10: Comparison of the PL and PLE profile for (BzTEA)₂TeCl₆ before and after grinding of the crystals along with their images under visible and UV light at room temperature.

Figure S11: Lifetime decay profile of $(BzTEA)_2TeCl_6$ powder collected across the broad emission band when excited with 440 nm source. Table lists the fitted lifetimes, their relative weights and average lifetime.

Figure S12: Effect of thermal annealing (from room temperature to 150 °C) of $(BzTEA)_2 TeCl_6$ crystals on the PL and PLE profiles. Excitation wavelength for PL is 445 nm and PLE is collected at 610 nm.

Figure S13: a) Arrhenius plot of natural logarithm of PL intensity against inverse temperature for broad band emission, b) fitting of the bandwidth (FWHM) as a function of temperature

Figure S14: Raman spectra of $(BzTEA)_2 TeCl_6$ crystals collected using 633 nm excitation laser source. The inset shows the low frequency phonon modes of the Te-Cl octahedron

Figure S15: Estimation of Huang-Rhys parameter (**S**) from the temperature dependence of FWHM utilizing the Toyozawa model.

Figure S16: Lifetime decay profile of (BzTEA)₂TeCl₆ crystals collected at low temperatures. Table lists the fitted lifetimes and their relative weights.

Figure S17: Thermogravimetric weight loss analysis and the derivative of the weight loss curve for $(BzTEA)_2 TeCl_6$ crystals.

Figure S18: Comparison of PL profile collected (λ_{exc} =440 nm) over time of ambient exposed (BzTEA)₂TeCl₆ hybrid

Figure S19: Comparison of PXRD pattern of as synthesized (using Mo source) and after one-month ambient exposure (using Mo source) of $(BzTEA)_2TeCl_6$ hybrid with that of simulated pattern (calculated using Mo source).

Absorbance Peak (nm)	Emission Peak (nm)	Stokes shift (nm)	PLQY (%)	General Formula	Reference
340	400	50	11.52	[(N-AEPz)ZnCl4]Cl	1
370	583	215	86.3	[Bmim] ₂ SbCl ₅	2
348	470	122	83	(C ₉ NH ₂₀) ₇ (PbCl ₄)Pb ₃ Cl ₁₁	3
545	637	128	70	(bmpy) ₉ [SbCl ₅] ₂ [Pb ₃ Cl ₁₁]	4
370, 360	625, 590	250, 245	86, 98	(TTA) ₂ SbCl ₅ , (TEBA)2SbCl ₅	5
375	648	273	87	(Ph ₄ P) ₂ SbCl ₅	6
348	512	164	Near unity	(bmpy) ₉ [ZnCl ₄] ₂ [Pb ₃ Cl ₁₁]	7
370	670	300	3	$(C_4H_{14}N_2)_2In_2Br_{10}$	8
365	610	245	35	(PMA)₃InBr ₆	9
375	450	75	50	(C ₆ N ₂ H ₁₆ Cl) ₂ SnCl ₆	10
355, 410, 380	570, 620, 590	215, 210, 210	95, 75, 98	(C ₄ N ₂ H ₁₄ Br) ₄ SnBr ₆ , (C ₄ N ₂ H ₁₄ I) ₄ SnI ₆ , (C ₉ NH ₂₀) ₂ SbCl ₅	11
448	608	160	15	Our system: (BzTEA) ₂ TeCl ₆	

 Table S1. Comparison of optical properties of various lead-free 0D system

Table S2. Comparison of optical pr	operties of various	Te based hybrid	systems (Ref
12,13)			

Absorption edge (nm)	Emission Peak (nm)	General Formula
545	610	(NH ₄) ₂ TeCl ₆
560	No emission	(CH ₃ NH ₃) ₂ TeCl ₆
545	615	$((CH_3)_2NH_2)_2TeCl_6$
550	No emission	((CH ₃) ₃ NH) ₂ TeCl ₆
550	605	$((CH_3)_4N)_2TeCl_6$
510	605	$((C_2H_5)_2NH_2)_2TeCl_6$
555	610	$((C_2H_5)_3NH)_2TeCl_6$
540	580	$((C_2H_5)_4N)_2TeCl_6$
570	605	$((C_4H_9)_4N)_2TeCl_6$
510	580	(HGu) ₂ TeCl ₆
490	600	(HDphg) ₂ TeCl ₆

490	570	(HDip) ₂ TeCl ₆
510	605	(HPhen) ₂ TeCl ₆
515	608	This Work : (BzTEA) ₂ TeCl ₆

References

- 1. X. Zhang, L. Li, S. Wang, X. Liu, Y. Yao, Y. Peng, M. Hong and J. Luo, *Inorg. Chem.*, 2020, **59**, 3527-3531.
- 2. Z. P. Wang, J. Y. Wang, J. R. Li, M. L. Feng, G. D. Zou and X. Y. Huang, *Chem. Commun.*, 2015, **51**, 3094-3097.
- 3. C. Zhou, H. Lin, M. Worku, J. Neu, Y. Zhou, Y. Tian, S. Lee, P. Djurovich, T. Siegrist and B. Ma, *J.Am.Chem.Soc.*, 2018,**140**, 13181-13184.
- 4. C. Zhou, S. Lee, H. Lin, J. Neu, M. Chaaban, L.-J. Xu, A. Arcidiacono, Q. He, M. Worku, L. Ledbetter, X. Lin, J. A. Schlueter, T. Siegrist and B. Ma, *ACS Materials Letters*, 2020, 2, 376-380.
- 5. Z. Li, Y. Li, P. Liang, T. Zhou, L. Wang and R.-J. Xie, *Chem. Mater.*, 2019, **31**, 9363-9371.
- 6. C. Zhou, M. Worku, J. Neu, H. Lin, Y. Tian, S. Lee, Y. Zhou, D. Han, S. Chen, A. Hao, P. I. Djurovich, T. Siegrist, M.-H. Du and B. Ma, *Chem. Mater.*, 2018, **30**, 2374-2378.
- C. Zhou, H. Lin, J. Neu, Y. Zhou, M. Chaaban, S. Lee, M. Worku, B. Chen, R. Clark, W. Cheng, J. Guan, P. Djurovich, D. Zhang, X. Lü, J. Bullock, C. Pak, M. Shatruk, M.-H. Du, T. Siegrist and B. Ma, ACS Energy Letters, 2019, 4, 1579-1583.
- A. Yangui, R. Roccanova, T. M. McWhorter, Y. Wu, M.-H. Du and B. Saparov, *Chem. Mater.*, 2019, 31, 2983-2991.
- 9. L. Zhou, J. F. Liao, Z. G. Huang, J. H. Wei, X. D. Wang, H. Y. Chen and D. B. Kuang, *Angew. Chem.*, 2019, **58**, 15435-15440.
- 10. G. Song, M. Li, Y. Yang, F. Liang, Q. Huang, X. Liu, P. Gong, Z. Xia and Z. Lin, *J. Phys. Chem. Lett.*, 2020, **11**, 1808-1813.
- C. Zhou, H. Lin, Y. Tian, Z. Yuan, R. Clark, B. Chen, L. J. van de Burgt, J. C. Wang, Y. Zhou, K. Hanson, Q. J. Meisner, J. Neu, T. Besara, T. Siegrist, E. Lambers, P. Djurovich and B. Ma, *Chem. Sci.*, 2018, 9, 586-593.
- 12. T. V. Sedakova and A. G. Mirochnik, Opt. Spectrosc., 2015, 119, 54-58.
- T. V. Sedakova, A. G. Mirochnik and V. E. Karasev, Opt. Spectrosc., 2011, 110, 755-761.

Single crystal Data:

X-ray intensity data measurements of compound (BzTEA)₂TeCl₆ was carried out on a Bruker

D8 VENTURE Kappa Duo PHOTON II CPAD diffractometer equipped with Incoatech multilayer mirrors optics. The intensity measurements were carried out with Mo micro-focus sealed tube diffraction source (MoK_{α}= 1.54178 Å) at 100(2) K temperature. The X-ray generator was operated at 50 kV and 1.4 mA. A preliminary set of cell constants and an orientation matrix were calculated from three matrix sets of 36 frames (each matrix run consists

of 12 frames). Data were collected with ω scan width of 0.5° at different settings of φ and 2θ with a frame time of 15 secs keeping the sample-to-detector distance fixed at 5.00 cm. The X-ray data collection was monitored by APEX3 program (Bruker, 2016).¹ All the data were corrected for Lorentzian, polarization and absorption effects using SAINT and SADABS programs (Bruker, 2016). Using the APEX3 (Bruker) program suite, the structure was solved with the ShelXS-97 (Sheldrick, 2008)² structure solution program, using direct methods. The model was refined with a version of ShelXL-2018/3 (Sheldrick, 2015)³ using Least Squares minimization. All the hydrogen atoms were placed in a geometrically idealized position and constrained to ride on its parent atoms.

Data for (BzTEA)₂TeCl₆: A single crystal of compound (BzTEA)₂TeCl₆, molecular formula 2(C₁₃H₂₂N) TeCl₆, approximate dimensions 0.019 mm x 0.071 mm x 0.079 mm, was used for the X-ray crystallographic analysis. The X-ray intensity data were measured ($\lambda = 0.71073$ Å). The integration of the data using a monoclinic unit cell yielded a total of 40868 reflections to a maximum θ angle of 27.99° (0.76 Å resolution), of which 3894 were independent (average redundancy 10.495, completeness = 99.8%, R_{int} = 5.90%, R_{sig} = 2.59%) and 3378 (86.75%) $2\sigma(F^2)$. than The final were greater cell constants of *a* = 11.2243(5) Å, *b* = 11.1763(5) Å, *c* =12.9134(6) Å, β $=90.737(2)^{\circ}$, volume = 1619.80(13) Å³, are based upon the refinement of the XYZ-centroids of reflections above 20 $\sigma(I)$. The calculated minimum and maximum transmission coefficients (based on crystal size) are 0.8950 and 0.9730. The structure was solved and refined using the Bruker SHELXTL Software Package, using the space group $P2_1/n$, with Z = 2 for the formula unit, $2(C_{13}H_{22}N)$ TeCl₆. The final anisotropic full-matrix least-squares refinement on F² with 163 variables converged at R1 = 2.84%, for the observed data and wR2 = 7.28% for all data. The goodnessof-fit was 1.123. The largest peak in the final difference electron density synthesis was 0.826 e⁻ /Å³ and the largest hole was -0.420 e⁻/Å³ with an RMS deviation of 0.094 e⁻/Å³. On the basis of the final model, the calculated density was 1.486 g/cm³ and F(000), 736 e⁻.

Identification code (BzTEA)₂TeCl₆ Chemical formula $C_{13}H_{22}Cl_3NTe_{0.50}$ Formula weight 362.46 g/mol Temperature 100(2) K 0.71073 Å Wavelength 0.019 x 0.071 x 0.079 mm Crystal size Crystal system monoclinic $P2_1/n$ Space group $\alpha = 90^{\circ}$ a = 11.2243(5) Å Unit cell dimensions b = 11.1763(5) Å $\beta = 90.737(2)^{\circ}$ $\gamma = 90^{\circ}$ c = 12.9134(6) Å 1619.80(13) Å³ Volume Ζ 2 Density (calculated) 1.486 g/cm^3 Absorption coefficient 1.431 mm⁻¹ F(000) 736 2.39 to 27.99° Theta range for data collection -14<=h<=14, -14<=k<=14, -Index ranges 17<=l<=17 Reflections collected 40868 Independent reflections 3894 [R(int) = 0.0590]Max. and min. transmission 0.9730 and 0.8950 Structure solution technique direct methods Structure solution program SHELXT 2014/5 (Sheldrick, 2014) Refinement method Full-matrix least-squares on F² SHELXL-2018/3 (Sheldrick, 2018) Refinement program

Table S3. Crystal data for (BzTEA)₂TeCl₆

Function minimized	$\Sigma \mathrm{w}(\mathrm{F_o^2} - \mathrm{F_c^2})^2$		
Data / restraints / parameters	3894 / 0 / 163		
Goodness-of-fit on F ²	1.123		
Δ/σ_{max}	0.001		
	3378 data; Ι>2σ(Ι)	R1 = 0.0284,	
Final R indices		wR2 = 0.0633	
T mar ic marces	all data	R1 = 0.0383,	
	an data	wR2 = 0.0728	
Weighting scheme	$w=1/[\sigma^2(F_o^2)+(0.0190P)^2+3.4895P]$		
weighting seneme	where $P = (F_o^2 + 2F_c^2)/3$		
Largest diff. peak and hole	0.826 and -0.420 eÅ ⁻³		
R.M.S. deviation from mean	0.094 eÅ ⁻³		

Te1-Cl2	2.5241(6)	Te1-Cl2#1	2.5241(6)
Te1-Cl3	2.5302(6)	Te1-Cl3#1	2.5302(6)
Te1-Cl1#1	2.5487(6)	Te1-Cl1	2.5487(6)
N1-C8	1.511(3)	N1-C10	1.516(4)
N1-C12	1.531(3)	N1-C1	1.534(3)
C1-C2	1.507(4)	C1-H1A	0.99
C1-H1B	0.99	C2-C3	1.396(4)
C2-C7	1.397(4)	C3-C4	1.384(4)
С3-Н3	0.95	C4-C5	1.389(4)
С4-Н4	0.95	C5-C6	1.383(5)
С5-Н5	0.95	C6-C7	1.379(4)
С6-Н6	0.95	С7-Н7	0.95
C8-C9	1.525(4)	C8-H8A	0.99
C8-H8B	0.99	С9-Н9А	0.98
С9-Н9В	0.98	С9-Н9С	0.98
C10-C11	1.513(4)	C10-H10A	0.99
C10-H10B	0.99	C11-H11A	0.98
C11-H11B	0.98	C11-H11C	0.98
C12-C13	1.516(4)	C12-H12A	0.99
C12-H12B	0.99	C13-H13A	0.98
С13-Н13В	0.98	С13-Н13С	0.98

Table S4. Bond lengths (Å) for (BzTEA)₂TeCl₆

Symmetry transformations used to generate equivalent atoms: #1 -x+1, -y+2, -z+1

Cl2-Te1-Cl2#1	180.00(3)	Cl2-Te1-Cl3	89.52(2)
Cl2#1-Te1-Cl3	90.48(2)	Cl2-Te1-Cl3#1	90.48(2)
Cl2#1-Te1-Cl3#1	89.52(2)	Cl3-Te1-Cl3#1	180.0
Cl2-Te1-Cl1#1	90.01(2)	Cl2#1-Te1-Cl1#1	89.99(2)
Cl3-Te1-Cl1#1	89.17(2)	Cl3#1-Te1-Cl1#1	90.83(2)
Cl2-Te1-Cl1	89.99(2)	Cl2#1-Te1-Cl1	90.01(2)
Cl3-Te1-Cl1	90.83(2)	Cl3#1-Te1-Cl1	89.17(2)
Cl1#1-Te1-Cl1	180.0	C8-N1-C10	112.0(2)
C8-N1-C12	106.9(2)	C10-N1-C12	110.8(2)
C8-N1-C1	111.2(2)	C10-N1-C1	105.6(2)
C12-N1-C1	110.4(2)	C2-C1-N1	115.8(2)
С2-С1-Н1А	108.3	N1-C1-H1A	108.3
C2-C1-H1B	108.3	N1-C1-H1B	108.3
H1A-C1-H1B	107.4	C3-C2-C7	118.0(3)
C3-C2-C1	120.8(3)	C7-C2-C1	121.1(3)
C4-C3-C2	121.1(3)	С4-С3-Н3	119.5
С2-С3-Н3	119.5	C3-C4-C5	119.7(3)
С3-С4-Н4	120.1	С5-С4-Н4	120.1
C6-C5-C4	120.0(3)	С6-С5-Н5	120.0
С4-С5-Н5	120.0	C7-C6-C5	120.0(3)
С7-С6-Н6	120.0	С5-С6-Н6	120.0
C6-C7-C2	121.2(3)	С6-С7-Н7	119.4
С2-С7-Н7	119.4	N1-C8-C9	115.1(3)
N1-C8-H8A	108.5	С9-С8-Н8А	108.5
N1-C8-H8B	108.5	С9-С8-Н8В	108.5
Н8А-С8-Н8В	107.5	С8-С9-Н9А	109.5
С8-С9-Н9В	109.5	Н9А-С9-Н9В	109.5
С8-С9-Н9С	109.5	Н9А-С9-Н9С	109.5
Н9В-С9-Н9С	109.5	C11-C10-N1	115.2(2)
C11-C10-H10A	108.5	N1-C10-H10A	108.5
C11-C10-H10B	108.5	N1-C10-H10B	108.5

Table S5. Bond angles (°) for (BzTEA)₂TeCl₆.

H10A-C10-H10B	107.5	C10-C11-H11A	109.5
C10-C11-H11B	109.5	H11A-C11-H11B	109.5
С10-С11-Н11С	109.5	H11A-C11-H11C	109.5
H11B-C11-H11C	109.5	C13-C12-N1	115.0(2)
C13-C12-H12A	108.5	N1-C12-H12A	108.5
С13-С12-Н12В	108.5	N1-C12-H12B	108.5
H12A-C12-H12B	107.5	С12-С13-Н13А	109.5
С12-С13-Н13В	109.5	H13A-C13-H13B	109.5
С12-С13-Н13С	109.5	H13A-C13-H13C	109.5
H13B-C13-H13C	109.5		

Symmetry transformations used to generate equivalent atoms: #1 -x+1, -y+2, -z+1

C8-N1-C1-C2	-58.1(3)	C10-N1-C1-C2	-179.8(2)
C12-N1-C1-C2	60.4(3)	N1-C1-C2-C3	92.8(3)
N1-C1-C2-C7	-91.8(3)	C7-C2-C3-C4	0.8(4)
C1-C2-C3-C4	176.4(3)	C2-C3-C4-C5	0.0(4)
C3-C4-C5-C6	0.4(5)	C4-C5-C6-C7	-1.8(5)
C5-C6-C7-C2	2.6(5)	C3-C2-C7-C6	-2.1(5)
C1-C2-C7-C6	-177.7(3)	C10-N1-C8-C9	51.8(3)
C12-N1-C8-C9	173.3(3)	C1-N1-C8-C9	-66.1(3)
C8-N1-C10-C11	59.0(3)	C12-N1-C10-C11	-60.4(3)
C1-N1-C10-C11	-179.8(2)	C8-N1-C12-C13	-174.3(2)
C10-N1-C12-C13	-52.0(3)	C1-N1-C12-C13	64.6(3)

Table S6. Torsion angles (°) for (BzTEA)₂TeCl₆.

References

- Bruker (2016). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.
- 2. G. M. Sheldrick, Acta Crystallogr., 2008, A64, 112.
- 3. G. M. Sheldrick, Acta Crystallogr., 2015, C71, 3-8.
- 4. L. J. Farrugia, J. Appl. Crystallogr. 2012, 45, 849-854.