The effect of electron withdrawing substituent in asymmetric anthracene derivative semiconductors

Si Liu,†^a Lei Zheng,†^a Mingxi Chen,^a Yajing Sun,^a Peng Wang,^a Shuyu Li,^a Hongnan Wu,^a Xiaotao Zhang *^a and Wenping Hu^{a, b}

^aTianjin Key Laboratory of Molecular Optoelectronic Sciences, Tianjin University, Tianjin 300072, China

^bJoint School of National University of Singapore and Tianjin University, International Campus of Tianjin University, Binhai New City, Fuzhou 350207, China.

Contents

- Table S1 Crystal data and structure refinement of TZ-Ant and F₅Ph-Ant.
- Figure S1 Comparison of molecular packing for Ph-Ant ,TZ-Ant and F₅Ph-Ant.
- Figure S2 Atomic force microscopy image of a thin film of Ph-Ant and TZ-Ant in the tapping mode and transfer characteristics of devices based on Ph-Ant and TZ-Ant.
- Figure S3 Single crystal based transistor of TZ-Ant and transfer characteristics of devices based on TZ-Ant.

Compound	TZ-Ant	F ₅ Ph-Ant
Empirical formula	C ₁₇ H ₁₁ NS	$C_{20}H_9F_5$
Formula weight	261.33	344.27
Temperature/K	293(2)	293(2)
Crystal system	orthorhombic	orthorhombic
Space group	Pna2 ₁	Pna2 ₁
a/Å	24.3454(3)	12.26360(10)
b/Å	8.44650(10)	15.4509(2)
c/Å	6.09350(10)	7.56040(10)
α/°	90	90
β/°	90	90
γ/°	90	90
Volume/Å ³	1253.03(3)	1432.57(3)
Ζ	4	4
$\rho_{calc} g/mm^3$	1.385	1.596
μ / mm -1	2.132	1.199
F(000)	544.0	696.0
Crystal size/mm ³	$0.4 \times 0.3 \times 0.2$	$0.3\times0.3\times0.3$
Radiation	Cu Ka (λ = 1.54184)	CuK α (λ = 1.54184)
2θ range for data collection	7.262 to 134.064	9.206 to 134.136°
	$-27 \le h \le 29$,	$-10 \le h \le 14$,
Index ranges	$-6 \le k \le 10$,	$-18 \le k \le 16$,
	$-7 \le l \le 7$	$-8 \le l \le 9$
Reflections collected	7392	9117
	2231	2484
Independent reflections	$[R_{int} = 0.0221,$	$[R_{int} = 0.0196,$
	$R_{sigma} = 0.0202]$	$R_{sigma} = 0.0173]$
Data/restraints/parameters	2231/1/216	2484/1/226
Goodness-of-fit on F ²	1.075	1.064
Final R indexes [I>= 2σ (I)]	$R_1 = 0.0265,$	$R_1 = 0.0266,$
	$wR_2 = 0.0687$	$wR_2 = 0.0677$
Final R indexes [all data]	$R_1 = 0.0274,$	$R_1 = 0.0271,$
	$wR_2 = 0.0698$	$wR_2 = 0.0685$
Largest diff. peak/hole / e Å ⁻³	0.12/-0.20	0.11/-0.19
Flack parameter	-0.003(11)	0.03(4)

Table S1. Crystal data and structure refinement of TZ-Ant and F_5 Ph-Ant. (CCDC No. 2033809, 2033782.)

Figure S1 Comparison of molecular packing for Ph-Ant(a,b), TZ-Ant(c,d) and F₅Ph-Ant(e,f).

Figure S2. Atomic force microscopy image of a thin film of Ph-Ant (a) and TZ-Ant (b) in the tapping mode and transfer characteristics of devices based on Ph-Ant (c) and TZ-Ant (d)

Figure S3. Single crystal based transistor of TZ-Ant and transfer characteristics of devices based on TZ-Ant