Supplementary Data

A new lead-free 1D hybrid copper perovskite with structural, thermal, vibrational, optic and magnetic characterizations

Mansoura Bourwina^a, Rawia Msalmi^a, Sandra Walha^a, Mark M. Turnbull^b, Thierry Roisnel^c, Ferdinando Costantino^d, Edoardo Mosconi^e and Houcine Naïli^a*

^{a.} Laboratory Physico Chemistry of the Solid State, Department of Chemistry, Faculty of Sciences of Sfax, Sfax University, Tunisia.

^{b.} Carlson School of Chemistry and Biochemistry, Clark University, Worcester, MA 01610, USA.

^{c.} Uni Rennes, CNRS, ISCR (Institut des Sciences Chimiques de Rennes), UMR6226, 35000 Rennes, France.

^{d.} Department of Chemistry, Biology and Biotechnologies, University of Perugia. Via Elce di Sotto 8, 06124, Perugia. Italy.

^{e.} Computational Laboratory for Hybrid/Organic Photovoltaics (CLHYO), Istituto CNR di Scienze e Tecnologie Chimiche "Giulio Natta" (CNR-SCITEC), Via Elce di Sotto 8, 06123 Perugia, Italy.

Thermal properties

The TGA plot shows that the decomposition of the precursor proceeds through two stages. The studied compound is stable up to about 182°C. At this temperature until 249°C we observe the first weight loss of 11.2%, in agreement with the departure of one chloride ion as HCl due to atmospheric moisture (theoretical weight loss of 11.5%) ¹. This decomposition process is accompanied by two endothermic peaks on the DTA curve at 213 and 237°C, respectively. The second transformation occurs in the temperature range 248–452°C (observed mass loss 54.32%, calculated mass loss 52.2%) which can be assigned to the degradation of the organic fragment ($C_5H_{12}N_2$) and the departure of one additional molecule of hydrogen chloride, leading most likely to the formation of CuCl₂. This decomposition process is accompanied by an intense endothermic peak on the DTA curve at 337°C.

Empirical formula	(C ₅ H ₁₄ N ₂)[CuCl ₄]
Formula weight (g/mol ⁻¹)	307.52
Space group	P 2 ₁ /n
Crystal system	Monoclinic
<i>a(</i> Å)	6.0751(3)
<i>b(</i> Å)	15.6732(8)
c (Å)	12.0466(7)
ß (°)	98.521(2)
<i>V</i> (ų)	1134.37(10)
Z	4
Crystal size (mm ³)	$0.41 \times 0.03 \times 0.02$
Crystal color and shape	Yellow thin stick
λ (Μο <i>Κ</i> α) <i>(</i> Å)	0.71073
Absorption correction	Multi-scan
Transmission factors	0.945, 0.754
hkl range	-7 ≤ h ≤ 7
	$-20 \le k \le 20$
	-15 ≤ ≤ 15
Programs system	SHELXL-2018 and SHELXT-2015
heta range for data collection (deg)	3.11-27.48
Diffractometer	D8 VENTURE Bruker AXS
No. of reflection collected	9644
No. of independent reflection	2608
No. of reflections observed (I > 2σ (I))	2341
Rint	0.0294
No. of parameters	121
Goodness of fit	1.09
R indices (I > $2\sigma(I)$)	$R_1 = 0.0388 \text{ w} R_2 = 0.1013$
R indices (all data)	$R_1 = 0.0433 \text{ w} R_2 = 0.1042$

Table S1: Experimental conditions and data collection of the $(C_5H_{14}N_2)[CuCl_4]$ crystal.

CuCl ₆ octahed	ron anion	C ₅ H ₁₄ N ₂ o	rganic cation
Cu-Cl1	2.3383(8)	C1-C2	1.452(7)
Cu-Cl2	2.2838(8)	C2-C3	1.523(6)
Cu-Cl3	2.3323(8)	C4-C6	1.506(5)
Cu-Cl4	2.2585(9)	N1-C1	1.482(5)
Cu-Cl2 ⁱ	3.0570(9)	N1-C5	1.494(4)
Cu-Cl2 ⁱⁱ	3.0442(9)	N2-C3	1.493(5)
Cl1-Cu-Cl2	88.96(3)	N2-C4	1.489(4)
Cl1-Cu-Cl3	177.83(3)	C1-C2-C3	117.8(4)
Cl1-Cu-Cl4	90.45(3)	C2-C1-N1	116.5(4)
Cl2 ⁱⁱ -Cu-Cl3	89.54(3)	C1-N1-C5	116.3(3)
Cl2-Cu-Cl4	179.25(4)	C4-N2-C3	118.9(3)
Cl3-Cu-Cl4	91.05(3)	N1-C5-C4	114.3(2)
Cl1-Cu-Cl2 ⁱ	88.80(3)	N2-C4-C5	113.3(3)
Cl2 ⁱ -Cu-Cl2	84.62(1)	N2-C3-C2	115.6(3)
Cl3-Cu-Cl2 ⁱ	89.50(3)		
Cl4-Cu-Cl2 ⁱ	95.84(3)		
Cl2 ⁱⁱ -Cu-Cl2 ⁱ	169.38(3)		
Cl1-Cu-Cl2 ⁱⁱ	90.03(3)		
Cl2 ⁱⁱ -Cu-Cl2	84.80(3)		
Cl3-Cu-Cl2 ⁱⁱ	91.40(3)		
Cl4-Cu-Cl2 ⁱⁱ	94.73(3)		

Table S2: Structural parameters of $(C_5H_{14}N_2)[CuCl_4]$, (Distances in Å and angles in °).

Symmetry codes : (i) 1-x, 1-y, 1-z ; (ii) -x, 1-y, 1-z

Table	S3:	Hydrogen	bonding	data
-------	-----	----------	---------	------

D-HA	D-H	HA	DA	D-HA
N1-H1A Cl1 ⁱⁱⁱ	0.91	2.34	3.165(3)	150.7
N1-H1BCl1 ^{iv}	0.91	2.36	3.219(3)	157.6
N2 - H2ACl3"	0.91	2.27	3.169(3)	169.3
N2 - H2BCl1	0.91	2.81	3.277(3)	113.0
N2 - H2BCl2	0.91	2.55	3.117(3)	120.7
N2 - H2BCl3 ⁱ	0.91	2.47	3.186(3)	135.6

Symmetry codes : (i) 1-x, 1-y, 1-z ; (ii) -x, 1-y, 1-z ; (iii) x-1/2, -y+1/2, z+1/2 ;

(iv) x+1/2, -y+1/2, z+1/2

IR	Assignment*	
3390	v _a (NH ₂)	
3036	v _s (NH ₂)	
2849	v(CH ₂)	
1634	δ(NH ₂)	
15531	δ(CH ₂)	
1445	ω(NH ₂)	
1411	ω (CH ₂)	
1323	v(C-N)	
1125	v(C-N)	
1069	v _a (C-C)	
1027	v _s (C-C)	
972	ρ(NH ₂)	
864	δ(C-C-C)	
767	δ(C-C-N)	
417	δ (C-N-C)	

Table S4: IR band assignment of $(C_5H_{14}N_2)[CuCl_4]$

*u: stretching. v_a : asymmetric stretching. v_s : symmetric stretching. δ : scissoring. ω : wagging.

1 D. B. Mitzi, *Chem. Mater.*, 1996, **8**, 791–800.

Figure S1: Description of a single inorganic chain. (a) Projection of a single chain along [010]. (b) Description of Cl ions environment

Figure S2: Inter-chains distances in different direction in the (b, c) plan.

Figure S3: Hydrogen bonds between organic and inorganic frameworks (H...Cl represented as dashed red lines).

Figure S4: (a) Reflectance and (b) K-M absorption of $(C_5H_{14}N_2)[CuCl_4]$.