Electronic Supplementary Information for:

Negligible concentration quenching in photoluminescent nanocrystals with high photoactive rare-earth concentrations: silica–(Tb,Ce)PO₄ transparent glass-ceramic green phosphors

Rena Iwasaki^a and Koichi Kajihara^a*

^{*a*}Department of Applied Chemistry for Environment, Graduate School of Urban Environmental Sciences, Tokyo Metropolitan University, 1-1 Minami-Osawa, Hachioji, Tokyo 192-0397, Japan

Experimental procedure

A dilute aqueous solution of nitric acid was added to 25 mmol (5.2 g) of tetraethoxysilane (TEOS, Shin-Etus Chemical) at a TEOS : H₂O : HNO₃ molar ratio of 1 : 1.83-1.87 (= x_1) : 0.002 and stirred for 55 min at 20 °C in a sealed plastic container to form a clear solution. Triphenylphosphine oxide (TPPO, Tokyo Chemical Industry) was added and stirred another 5 min to form a clear solution. This solution was further mixed with an aqueous solution of ammonium acetate (AcONH₄, Wako Pure Chemical), terbium acetate ((AcO)₃Tb, 99.9%, Wako Pure Chemical), cerium acetate ((AcO)₃Ce, 99.99 %, Rare Metallic), and neodymium acetate ((AcO)₃Nd, 99.9 %, Wako Pure Chemical). The overall TEOS : H₂O : HNO₃ : AcONH₄ : $(AcO)_3Tb + (AcO)_3Ce + (AcO)_3Nd$: TPPO molar ratio was 1 : 10 (= $x_1 + x_2$) : 0.002 : 0.01 : 0.01 (= $z_{\text{RE}} = z_{\text{Tb}} + z_{\text{Ce}} + z_{\text{Nd}}$) : z_{P} . The molar ratio of RE acetates was fixed at z_{Tb} : $z_{\text{Ce}} = 98$: 2 (2 at % Ce) for the Nd-free samples and z_{Tb} : z_{Ce} : z_{Nd} = 97 : 2 : 1 (2 at % Ce and 1 at % Nd) for the Nd-doped sample. After stirring for 2 min, the stir bar was removed and the resultant clear solution was maintained at 20 °C until gelation. The gel was aged for 1 day at 60 °C. The container was then opened, solvent phase was discarded, and the wet gel was gently dried at 60 °C. The dried gels were sintered in a tube furnace heated at a rate of 200 °C h⁻¹ and held at 1200 °C up to 1 h. The sintering atmosphere was changed from air to He at 600 °C. Hydrogen reduction was conducted by additionally introducing a small amount (5 %) of H₂ between 800 and 1200 °C. Two parallel faces of sintered glasses were polished to an optical finish.

Optical absorption and Raman spectra were acquired using a conventional spectrometer (U-4100, Hitachi) and Raman spectrometer (NRS-4500, JASCO, excitation at 532 nm), respectively. Photoluminescence (PL) spectra were recoded using an integrating sphere (4P-GPS-033-SL, Labsphere) connected to a fluorophotometer (F-7000, Hitachi) used as a light source and a CCD spectrometer (BLACK-Comet, StellarNet). PL intensity was calibrated using a photodiode power meter (PD300R-UV, OPHIR). The areas of the emission and excitation bands in the PL spectra obtained by directly illuminating the sample define the number of emitted photons, $N_{\rm em}$, and the number of photons not absorbed by the sample, $N_{\rm ex}$, respectively. The area of the excitation band for an empty sphere corresponds to the number of photons from the light source, N_{ex}^0 . Absorption factor (f_A), internal quantum efficiency (IQE), and external quantum efficiency (EQE) were defined as $f_A = (N_{ex}^0 - N_{ex})/N_{ex}^0$, IQE = $N_{em}/(N_{ex}^0 - N_{ex})$, and EQE = $f_A \times IQE = N_{em}/N_{ex}^0$, respectively. The experimental uncertainties of f_A , IQE, and EQE were ± 2 %. The PL decay curves of the ${}^{5}D_{4} \rightarrow {}^{7}F_{j}$ (j = 4, 5) transitions of Tb³⁺ ions were recorded using a photomultiplier (R955, Hamamatsu Photonics) covered by a 532 nm long-pass edge filter (LP03-532RU-25, Semrock) and color filter (G545, HOYA), and connected to an oscilloscope. Excitation light from an ultraviolet light-emitting diode (~0.35 mW at ~290 nm) was periodically cut with an optical chopper. In these PL measurements a commercial $(La,Tb,Ce)PO_4$ green phosphor powder (NP-220-02, Nichia) was used as a reference. Several samples were crushed and subject to observations by a transmission electron microscope (TEM, JEM-3200FS, JEOL, operated at 300 kV).

Fig. S1 Near-infrared optical absorption spectrum of glass-ceramic prepared $z_P/z_{RE} = 2.0$ and sintered in He–H₂

Fig. S2 TEM image of glass-ceramic prepared at $z_P/z_{RE} = 2.0$ and sintered in He–H₂.

Fig. S3 PL decay curves of the ${}^{5}D_{4} \rightarrow {}^{7}F_{j}$ (j = 4, 5) transitions of Tb³⁺ ions in glass-ceramic prepared at $z_{P}/z_{RE} = 2.0$ and sintered in He–H₂, and (La,Tb,Ce)PO₄ phosphor powder under excitation at 290 nm. Dashed lines denote single-exponential functions fitted to observed decay curves.

Fig. S4 PL spectra of silica–(Tb,Ce)PO₄ (Nd-free) and silica–(Tb,Ce,Nd)PO₄ (Nd-doped) glass-ceramics prepared at $z_{Ce}/z_{RE} = 0.02$ and $z_P/z_{RE} = 2.0$, and sintered in He–H₂. The Nd-doped sample was prepared at $z_{Nd}/z_{RE} = 0.01$. The spectra of the Nd-free sample and empty sphere are identical to those shown in Fig. 5.