Supporting Information

Highly dispersed MoS_x nanodot-modified TiO₂ photocatalyst: Vitamin C-mediated synthesis and improved H₂ evolution activity

Jiangyuan He,^a Wei Zhong,^b Ying Xu^{a*}, Jiajie Fan,^c Huogen Yu^{a, b*} and Jiaguo Yu^d

^a School of Chemistry, Chemical Engineering and Life Sciences, Wuhan University of Technology, Wuhan 430070, P. R. China

^b State Key Laboratory of Silicate Materials for Architectures, Wuhan University of Technology, Wuhan 430070, P. R. China

^c School of Materials Science and Engineering, Zhengzhou University, Zhengzhou
450002, PR China

^d State Key Laboratory of Advanced Technology for Material Synthesis and Processing, Wuhan University of Technology, Wuhan 430070, PR China

E-mail: xuy6289@whut.edu.cn; yuhuogen@whut.edu.cn

SI-1 The AQE calculation

The apparent quantum efficiency (AQE) of the prepared photocatalyst is calculated via the following equation:

$$AQE(\%) = \frac{\text{number of reacted electrons}}{\text{number of incident photons}} \times 100\%$$
$$= \frac{\text{number of evolved H}_2 \text{ molecules} \times 2}{\text{number of incident photons}} \times 100\%$$

The average power of the UV light (four 3-W 365 nm) was 22.4 mW/cm². Hence, the AQE of the $TiO_2@C/MoS_x(0.7 \text{ wt\%})$ photocatalyst can be calculated to be 3.94%.

Fig. S1. The influence of VC amount on the photocatalytic H₂-evolution activities of $TiO_2@C/MoS_x(1.0\%)$ photocatalyst: (a) 0 mg, (b) 5 mg, (c) 9 mg, (d) 15 mg, (e) 20 mg, (f) 50 mg.

Fig. S2. FESEM images of different photocatalysts: (a) TiO_2 , (b) $TiO_2@C$, (c) $TiO_2@C/MoS_x(0.7\%)$, (d) $TiO_2/MoS_x(0.7\%)$.

Fig. S3. (A) Raman spectra, (B) The enlarged Raman spectra of different samples: (a) TiO₂, (b) TiO₂/MoS_x(0.7%), (c) TiO₂@C/MoS_x(0.7%), (d) TiO₂@C.

Fig. S4. Photocatalytic H_2 -evolution activities of typical TiO_2 and MoS_x -modified photocatalysts.