Quantitative Vibrational Spectroscopy on Liquid Mixtures:

Concentration Units Matter

Henk-Jan van Manen^{a,b,*} Jan Gerretzen^a, Martijn Smout^a, Geert Postma^b, and Jeroen J. Jansen^b

^aNouryon Chemicals B.V., Expert Capability Group Measurement & Analytical Science, Zutphenseweg

10, 7418 AJ Deventer, The Netherlands

^bRadboud University, Institute for Molecules and Materials, Department of Analytical Chemistry &

Chemometrics, Heyendaalseweg 135, 6525 AJ Nijmegen, The Netherlands

*Corresponding Author (henkjan.vanmanen@nouryon.com, +31611598416)

This Supporting Information contains the following:

- Tables S1-S4: Compositional details of the 4 binary solvent mixtures used in this study
- **Figures S1-S4:** Raw NIR, Raman, and MIR spectra of the 4 binary solvent mixtures used in this study
- Figure S5: MIR spectra of the chloroform-toluene mixture
- **Table S5:** PLS results (RMSEP values using 1 LV) of the 4 binary solvent mixtures for NIR, Raman, and MIR data, using both mass and volume fractions as concentration units.
- Procedure for PLS simulations
- Table S6: Hypothetical binary liquid systems used for PLS simulations
- **Figure S6:** Simulated spectra of the tetrachloromethane-pentane mixture in the mass fraction range 0–1.

Sample number	Mass fraction chloroform	Mass fraction heptane	Volume fraction chloroform	Volume fraction heptane	
Calibration samples					
1	1	0	1	0	
2	0.9579	0.0421	0.9125	0.0875	
3	0.9140	0.0860	0.8296	0.1704	
4	0.8707	0.1293	0.7554	0.2446	
5	0.8263	0.1737	0.6856	0.3144	
6	0.7810	0.2190	0.6205	0.3795	
7	0.7358	0.2642	0.5608	0.4392	
8	0.6886	0.3114	0.5034	0.4966	
9	0.6413	0.3587	0.4504	0.5496	
10	0.5932	0.4068	0.4007	0.5993	
11	0.5435	0.4565	0.3531	0.6469	
12	0.4943	0.5057	0.3094	0.6906	
13	0.4430	0.5570	0.2672	0.7328	
14	0.3919	0.6081	0.2281	0.7719	
15	0.3388	0.6612 0.1903		0.8097	
16	0.2854	0.7146	0.1548	0.8452	
17	0.2308	0.7692	0.1209	0.8791	
18	0.1743	0.8257	0.0882 0.911		
19	0.1172	0.8828	0.0574	0.9426	
20	0.0595	0.9405	0.0282	0.9718	
21	0	1	0	1	
Test samples					
1	0.9780	0.0220	0.9533	0.0467	
2	0.8764	0.1236	0.7648	0.2352	
3	0.7702	0.2298	0.6057	0.3943	
4	0.6590	0.3410	0.4698	0.5302	
5	0.5441	0.4559	0.3536	0.6464	
6	0.4231	0.5769	0.2516	0.7484	
7	0.2976	0.7024	0.1626	0.8374	
8	0.1669	0.8331	0.0841	0.9159	
9	0.0286	0.9714	0.0133	0.9867	

Table S1: Compositional details of the formulated chloroform-heptane mixtures.

Sample number	Mass fraction chloroform	Mass fraction toluene	Volume fraction chloroform	Volume fraction toluene	
		Calibration	samples		
1	1	0	1	0	
2	0.9608	0.0392	0.9343	0.0657	
3	0.9215	0.0785	0.8719	0.1281	
4	0.8805	0.1195	0.8104	0.1896	
5	0.8384	0.1616	0.7505	0.2495	
6	0.7955	0.2045	0.6928	0.3072	
7	0.7516	0.2484	0.6369	0.3631	
8	0.7072	0.2928	0.5834	0.4166	
9	0.6603	0.3397	0.5298	0.4702	
10	0.6130	0.3870	0.4787	0.5213	
11	0.5645	0.4355	0.4291	0.5709	
12	0.5145	0.4855	0.3806	0.6194	
13	0.4632	0.5368	0.3334	0.6666	
14	0.4112	0.5888	0.2882	0.7118	
15	0.3568	0.6432	0.6432 0.2434		
16	0.3015	0.6985	0.2002	0.7998	
17	0.2442	0.7558	0.1578	0.8422	
18	0.1861	0.8139	0.1170	0.8830	
19	0.1256	0.8744	0.0769	0.9231	
20	0.0640	0.9360	0.0381	0.9619	
21	0	1	0	1	
Test samples					
1	0.9806	0.0194	0.9669	0.0331	
2	0.8854	0.1146	0.8175	0.1825	
3	0.7846	0.2154	0.6787	0.3213	
4	0.6777	0.3223	0.5493	0.4507	
5	0.5645	0.4355	0.4291	0.5709	
6	0.4438	0.5562	0.3163	0.6837	
7	0.3163	0.6837	0.2115	0.7885	
8	0.1793	0.8207	0.1124	0.8876	
9	0.0313	0.9687	0.0184	0.9816	

Table S2: Compositional details of the formulated chloroform-toluene mixtures.

Sample number	Mass fraction toluene	Mass fraction heptane	Volume fraction toluene	Volume fraction heptane	
		Calibration	samples		
1	1	0	1	0	
2	0.9450	0.0550	0.9314	0.0686	
3	0.8915	0.1085	0.8666	0.1334	
4	0.8382	0.1618	0.8038	0.1962	
5	0.7861	0.2139	0.7439	0.2561	
6	0.7337	0.2663	0.6854	0.3146	
7	0.6821	0.3179	0.6292	0.3708	
8	0.6301	0.3699	0.5740	0.4260	
9	0.5793	0.4207	0.5213	0.4787	
10	0.5294	0.4706	0.4708	0.5292	
11	0.4792	0.5208	0.4212	0.5788	
12	0.4291	0.5709	0.3727	0.6273	
13	0.3806	0.6194	0.3270	0.6730	
14	0.3312	0.6688 0.2814		0.7186	
15	0.2823	0.7177 0.2372		0.7628	
16	0.2353	0.7647 0.1957		0.8043	
17	0.1874	0.8126 0.1542		0.8458	
18	0.1399	0.8601	0.1139	0.8861	
19	0.0941	0.9059	0.0759	0.9241	
20	0.0473	0.9527	0.0378	0.9622	
21	0	1	0	1	
Test samples					
1	0.9728	0.0272	0.9658	0.0342	
2	0.8450	0.1550	0.8117	0.1883	
3	0.7211	0.2789 0.6715		0.3285	
4	0.5986	0.4014	0.5411	0.4589	
5	0.4790	0.5210	0.4210	0.5790	
6	0.3618	0.6382	0.3096	0.6904	
7	0.2467	0.7533	0.2057	0.7943	
8	0.1337	0.8663	0.1087	0.8913	
9	0.0232	0.9768	0.0184	0.9816	

Table S3: Compositional details of the formulated toluene-heptane mixtures.

Sample number	Mass fraction MEK	Mass fraction heptane	Volume fraction MEK	Volume fraction heptane	
		Calibration	samples		
1	1	0	1	0	
2	0.9323	0.0677	0.9212	0.0788	
3	0.8662	0.1338	0.8462	0.1538	
4	0.8028	0.1972	0.7757	0.2243	
5	0.7419	0.2581	0.7095	0.2905	
6	0.6835	0.3165	0.6472	0.3528	
7	0.6267	0.3733	0.5879	0.4121	
8	0.5713	0.4287	0.5310	0.4690	
9	0.5191	0.4809	0.4784	0.5216	
10	0.4675	0.5325	0.4272	0.5728	
11	0.4185	0.5815	0.3795	0.6205	
12	0.3699	0.6301	0.3328	0.6672	
13	0.3239	0.6761	0.2893	0.7107	
14	0.2801	0.7199	0.2485	0.7515	
15	0.2353	0.7647	0.7647 0.2073		
16	0.1937	0.8063	0.1695	0.8305	
17	0.1530	0.8470	0.1330	0.8670	
18	0.1134	0.8866	0.0980	0.9020	
19	0.0739	0.9261	0.0635	0.9365	
20	0.0377	0.9623	0.0322	0.9678	
21	0	1	0	1	
Test samples					
1	0.9657	0.0343	0.9599	0.0401	
2	0.8109	0.1891	0.7847	0.2153	
3	0.6697	0.3303	0.6327	0.3673	
4	0.5387	0.4613	0.4981	0.5019	
5	0.4184	0.5816	0.3794	0.6206	
6	0.3069	0.6931	0.2734	0.7266	
7	0.2040	0.7960	0.1788	0.8212	
8	0.1081	0.8919	0.0933	0.9067	
9	0.0173	0.9827	0.0148	0.9852	

Table S4: Compositional details of the formulated MEK-heptane mixtures.

Figure S1. Raw NIR, Raman, and MIR spectra of chloroform-heptane mixtures; color map ranging from pure chloroform (blue) to pure heptane (red).

Figure S2. Raw NIR, Raman, and MIR spectra of chloroform-toluene mixtures; color map ranging from pure chloroform (blue) to pure toluene (red).

Figure S3. Raw NIR, Raman, and MIR spectra of Toluene-Heptane mixtures; color map ranging from pure toluene (blue) to pure heptane (red).

Figure S4. Raw NIR, Raman, and MIR spectra of MEK-Heptane mixtures; color map ranging from pure MEK (blue) to pure heptane (red).

Figure S5. MIR spectra of the chloroform-toluene mixture. The antisymmetric CCl_3 band of chloroform gradually shifts from 744 to 758 cm⁻¹ upon mixing with toluene.

Table S5: PLS results (RMSEP values using 1 LV) of the 4 binary solvent mixtures for NIR, Raman, and MIR data, using both mass and volume fractions as concentration units.

Binany system	Component	RMSEP values for NIR		RMSEP values for Raman		RMSEP values for MIR	
billary system		Mass fraction	Volume fraction	Mass fraction	Volume fraction	Mass fraction	Volume fraction
Chloroform- Heptane mixtures	Chloroform	0.049	0.016	0.075	0.015	0.036	0.034
Chloroform- Toluene mixtures	Chloroform	0.066	0.023	0.050	0.010	0.048	0.024
Toluene-Heptane mixtures	Toluene	0.012	0.008	0.027	0.040	0.020	0.039
MEK-Heptane mixtures	МЕК	0.005	0.018	0.022	0.017	0.027	0.020s

PLS simulations

For 15 hypothetical binary solvent systems with widely varying density differences (see Table S1), 21 mixture spectra per system were simulated as single noise-free Gaussian peaks (without peak shifts) scaling in intensity with volume fraction. This was done for the mass fraction ranges 0–1, 0–0.1, and 0–0.01, producing 45 data sets in total. An example of a data set simulated in this way is shown in Figure S2. PLS regression was applied to all of these data sets, using mass fractions as reference data. RMSECV values were calculated using 7-fold Venetian blinds cross-validation. The RMSECV values, expressed as relative numbers to the mean of the relevant mass fraction range, are plotted in Figure 6 of the article.

System	Component 1 Density (kg L ⁻¹)	Component 2 Density (kg L ⁻¹)	Δρ (kg L ⁻¹)
1	Tetrachloromethane 1.5940	Dichloromethane 1.3266	0.2674
2	Tetrachloromethane 1.5940	Ethylene glycol 1.1088	0.4852
3	Tetrachloromethane 1.5940	Ethyl acetate 0.9003	0.6937
4	Tetrachloromethane 1.5940	n-Heptane 0.6837	0.9103
5	Tetrachloromethane 1.5940	n-Pentane 0.6262	0.9678
6	Dichloromethane 1.3266	Ethylene glycol 1.1088	0.2178
7	Dichloromethane 1.3266	Ethyl acetate 0.9003	0.4263
8	Dichloromethane 1.3266	n-Heptane 0.6837	0.6429
9	Dichloromethane 1.3266	n-Pentane 0.6262	0.7004
10	Ethylene glycol 1.1088	Ethyl acetate 0.9003	0.2085
11	Ethylene glycol 1.1088	n-Heptane 0.6837	0.4251
12	Ethylene glycol 1.1088	n-Pentane 0.6262	0.4826
13	Ethyl acetate 0.9003	n-Heptane 0.6837	0.2166
14	Ethyl acetate 0.9003	n-Pentane 0.6262	0.2741
15	n-Heptane 0.6837	n-Pentane 0.6262	0.0575

Table S6. Hypothetical binary liquid systems used for PLS simulations.

Figure S6. Simulated spectra of the tetrachloromethane-pentane mixture in the mass fraction range 0–1.