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1. Reagents and instruments
Materials and reagents.

All DNA oligonucleotides (Table S1) were purchased from Sangon Biotech Co.,
Ltd. (Shanghai, China) and purified by ultra-PAGE (polyacrylamide gel
electrophoresis) and high-performance liquid chromatography methods. ATP was
purchased from Sigma-Aldrich Chemical Co. Ltd. UTP, GTP, CTP were obtained
from NEW ENGLAND BioLabs® Inc. Mito-Tracker Green was purchased from
Yeasen Biotech Co., Ltd (Shanghai, China). Cell Counting Kit-8 was obtained from
Beyotime Biotech Co., Ltd. (Shanghai, China). Camptothecin and oligomycin was
purchased from Yuanye Biotech Co., Ltd. (Shanghai, China). Deionized and sterilized
water (resistance > 18.25 MQ-cm) was used in all experiments. All chemical reagents
were of analytical grade and without any further purification before use.

Instruments

All the fluorescence measurements were conducted on a Shimadzu RF-5301 PC
fluorescence spectrometer (Shimadzu Ltd., Japan) with an excitation wavelength of
540 nm. Excitation and emission slits were set at 5.0 and 3.0 nm, respectively.
Dynamic light scattering (DLS) experiments were performed on the Malvern
Zetasizer Nano ZS90 (Malvern Instruments, Ltd., Worcestershire, UK) at room
temperature. Atomic force microcopy (AFM) characterization was carried out using
Bruker Dimension Icon (USA). The cell fluorescence images were captured by

confocal laser scanning microscope (Nikon A1R) equipped with 60 X objective lens



and 100 x objective lens. The cytotoxicity assay was performed via microplate reader

(Synergy 4).
Table S1. Oligonucleotides used in this work

Oligonucleotide Sequence (5'—3")

Al ATT GTG ACC CAC CAG TAT GAC CCG TTC GGA

A2 TCC GAA CGG GTC ATA GTG TCA CTC TTG ACA TCC

A3-aptl Cv3-ACCTGGGGGAGTAT GGA TGT CAA GAG TGA GTG GTC
ACG ACGTCATTA

A3-apt2 TGCGGAGGAAGGT(Cy5) GGA TGT CAA GAG TGA GTG GTC
ACG ACGTCATTA

A4 TAA TGA CGT CGT GAC GTG CTG GTG GGT CAC AAT

aptl Cy3-ACCTGGGGGAGTAT

apt2 TGCGGAGGAAGGT-CyS5

NLa-1 is constructed by Al + A2 + A3-aptl + A4.
NLa-2 is constructed by Al + A2 + A3-apt2 + A4.

Underline is the split ATP aptamer sequence.



2. Fluorescence spectra NLa-1, NLa-2 and their mixture
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Figure S1. Fluorescence spectra of NLa-1, NLa-2, NLa-1/NLa-2 mixture and the

spectral sum of NLa-1 and NLa-2.

3. ATP-sensing using single-stranded split aptamer probes (aptl/apt2)
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Figure S2. ATP-sensing using aptl/apt2 mixture. (a) Fluorescence spectral change of

the aptl/apt2 mixture in response to different concentrations of ATP. (b) ATP

concentration-dependent Fa/Fp ratio change. The red line represents the linear

relationship between F,/Fp ratio and ATP concentration in the range of 0 — 1 mM.



4. Incubation time-dependent ATP-imaging

Figure S3. Fluorescence images of MCF-7 cells incubated with NLa-1/NLa-2

mixture for different time. Scale bar is 50 pm.

5. Cytotoxicity of nanoprobes towards HEK-293 cells
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Figure S4. Cell viability of HEK-293 cells after incubation with different

concentrations of NLa-1/NLa-2 mixture for different time.



6. Colocalization analysis between Mito-Tracker and Cy5S

Table S2 Colocalization analysis parameters of the cell image in Figure 6

Pearson's correlation 0. 870249
Mander's overlap 0.916618
Mander's overlap

coefficients k1 0.493518
' r
Mander's overlap 1. 702448

coefficients k2

7. Colocalization analysis between Mito-Tracker and Cy3
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Figure SS5. Intracellular colocalization image of Cy3 and Mito-Tracker Green

fluorescence in MCF-7 cells. (a) Fluorescence images collected from Mito-Tracker

Green and Cy3 channels and merged image. (b) Intensity scatter plot of Cy3 and

Mito-Tracker Green. (c) Colocalization analysis parameters of the cell image. (d)

Fluorescence intensity profile of the white arrow in (a). Scale bar is 20 um.



8. Colocalization analysis between Cy3 and Cy5S
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Figure S6. Intracellular colocalization image of Cy3 and Cy5 fluorescence in MCF-7

cells. (a) Fluorescence images collected from Cy3 and Cy5 channels and merged

image. (b) Intensity scatter plot of Cy3 and Cy5. (c) Colocalization analysis

parameters of the cell image. (d) Fluorescence intensity profile of the white arrow in

(a). Scale bar is 20 pum.



9. Comparison of different methods for ATP sensing
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