Supporting Information

Anatase porous titania nanosheets for resonant-gravimetric detection

of ppb-level NO₂ at room-temperature

Jialin Yang^{a,b}, Ding Wang^a, Ming Li^{b,c,*}, Haitao Yu^b, Pengcheng Xu^{b,c} and Xinxin Li^{b,c,*}

^aSchool of Material Science & Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China.

^bState Key Lab of Transducer Technology, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai 200050, China. Email: liming01@mail.sim.ac.cn; xxli@mail.sim.ac.cn

^cSchool of Microelectronics, University of Chinese Academy of Sciences, Beijing 100049, China.

Fig. S1. Raman spectra of the PTNS synthesized at two different calcination temperatures of 500 and 800 °C compared with that of the GO templates.

Fig. S2. Typical TEM image of the TiO_2 -500 °C sample for showing the thickness of PTNS.

Fig. S3. The adsorption energy (ΔE) calculation results for one NO₂ molecule adsorption on (a) anatase TiO₂ (101) surface and (b) rutile TiO₂ (110) surface.