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Supporting Figures and Tables

Figure S1. The basic layout of a differential mobility spectrometry (DMS) cell consists of two-planar electrodes separated by a 1 mm 
gap. Ions are introduced to the DMS cell by ESI and carried through the device with the flow of the N2 carrier gas. Application of the 
oscillating separation field, denoted the separation voltage (SV), induces off-axis motion of the analytes that is determined by their field 
dependent mobility. Ion trajectories are stabilized by application of a static direct-current compensation voltage (CV). The magnitude 
of the CV applied is correlated with the differential mobility of the ion, enabling spatial resolution of analytes as they are directed 
towards the exit orifice of the DMS cell to the mass spectrometer. Figure adapted from Ref. 1. 
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Figure S2. SelexION system coupled to the QTRAP 5500 (SCIEX) hybrid linear ion trap triple-quadrupole mass spectrometer. 
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Figure S3. (A) m/z, (B) collision cross section, and (C) molecular superclasses as identified by 
Classyfire2 distributions for the 409 compounds used in this study.
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Figure S4. Learning curves for the prediction of CV and each SV sampled using the unguided (A) 
and 2 point guided (B) random-forest approach. 
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Table S1. DMS-MS experimental parameters as controlled using Analyst 1.7. N2 was used as source 
gas, the curtain gas in the DMS cell, and as the collision gas for data acquisition in MRM mode. 
MRM transitions are provided in the Excel sheet accompanying this manuscript.

Parameter Setting
Source

Curtain Gas (CUR) 20.0
Ion spray voltage (IS) 5500

Source Temperature (TEM) 50
Nebulizing Gas Pressure (GS1) 30.0
Auxiliary Gas Pressure (GS2) 10.0

Compound
Declustering Potential (DP) 100

Entrance Potential (EP) 10
Collision Energy (CE) Varies

Collision Cell Exit Potential (CXP) 15
DMS

DMS Temperature (DT) Low
Modifier (MD) None

Separation Voltage (SV) Varies
Compensation Voltage Varies

DMS Offset (DMO) −3.0
DMS Resolution Enhancement (DR) Off

Resolution – Quad 1
Ion Energy 1 (IE1) 1.1

Q1 Resolution Unit
Resolution – Quad 3

Ion Energy 3 (IE3) 1.8
Q1 Resolution Unit

Detector
CEM (CEM) 2100.0
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Supplementary Section S1 – CCS calculation workflow

All ions used in this study were products by electrospray ionization in positive mode. Thus, 

computational investigations of he ions considered in this study were either protonated molecules 

(i.e., [M + H]+) or those with permanent positive charges (e.g., choline). All possible protonation 

sites were explored if a molecule exhibited more than one gas-phase basic site. In cases where 

protonation sites or molecular conformations could not be were not immediately obvious based on 

chemical intuition, the potential energy surface (PES) of the molecular ion was mapped using a 

basin-hopping (BH)3–7 algorithm interfaced with Gaussian 16 (Version C.01).8 

Optimizations in the BH search were conducted using the Universal Force Field (UFF),9 which was 

supplemented partial charges for a ‘guess structure’ of the parent ion as calculated at the B3LYP-

D3/6-31+G(d,p) level of theory.10,11 Atomic partial charges were generated based on the electrostatic 

potential of the ion according to the Merz–Singh–Kollman (MK) partition 

scheme.12,13 Conformational searches within the BH code were done by randomly distorting all 

rotatable dihedral angles by −10° ≤ Φ ≤ 10°. In total, 5000 to 20000 structures were sampled 

depending on the size of the ion in question since larger molecules require greater exploration of the 

PES to capture all relevant local minima. 

Typically, the BH routine would identify 5 – 100 low-energy conformers (< 75 kJ mol−1) for each 

protonated isomer. Candidate structures were then carried forward for pre-optimization at the semi-

empirical PM7 level of theory,14,15 and subsequently sorted based on energy and cosine similarities. 

For details on cosine similarities, see ref. 16. Unique conformers within 50 kJ mol−1 of the lowest 

energy PM7 geometry were carried forward for full optimization using density functional theory 

(DFT) at the B3LYP-D3/6-31++G(d,p) level of theory. Normal mode analyses were conducted to 
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verify that each structure corresponded to a minimum on the PES and to calculate the 

thermochemistry (enthalpy, entropy, and Gibbs energy) for each species.

The MobCal-MPI17 code was used to calculate ion-neutral CCS in N2 (ΩN2) for all DFT isomers. 

All CCS calculations involved 10 complete cycles of mobility calculations that used 48 points of 

velocity integration and 512 points of impact parameter integration. Calculated ΩN2 values are 

reported as average values with statistical errors assessed from the 10 cycles of calculation. For ions 

exhibiting multiple low-energy conformations or prototropic isomers, a Boltzmann-weighted CCS 

is reported based on the standard Gibbs corrected energies (T = 298.15 K) determined by DFT. The 

total error for a corresponding Boltzmann-weighted CCS was calculated from the standard errors 

for the Boltzmann-weighted CCSs of the low-energy isomers. Cartesian coordinates of each isomer 

alongside calculated thermochemical data, pertinent MobCal-MPI files, and calculated CCSs are 

available in the dedicated section with the supporting information. 
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Supplementary Section S2 – Dispersion plots from a 
validation set composed of Type A, B, and C ions

The following dispersion curves correspond to the 69th randomly generated validation set produced 

by training the random-forest framework with 95% of the dataset. Full details and outputs all other 

validation sets are provided with the GitHub release at https://github.com/HopkinsLaboratory. 

Predicted and experimental dispersion curves for the 69th set are shown below in Figures S5 – S25. 

Figure S5. Dispersion curves of 2,3-methylenedioxyamphetamine as predicted by the unguided 
(red) and two-point guided (blue) ML-approaches compared to the experimental dispersion curve 
(black). 

https://github.com/HopkinsLaboratory
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Figure S6. Dispersion curves of 7-chloro-2-methylquinolin-8-ol as predicted by the unguided (red) and two-point guided (blue) ML-
approaches compared to the experimental dispersion curve (black). 
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Figure S7. Dispersion curves of adenine as predicted by the unguided (red) and two-point guided (blue) ML-approaches compared to 
the experimental dispersion curve (black). 



S13

Figure S8. Dispersion curves of B2b (ethyl (2-(piperidine-1-carbonyl)phenyl)carbamate) as predicted by the unguided (red) and two-
point guided (blue) ML-approaches compared to the experimental dispersion curve (black). 
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Figure S9. Dispersion curves of carbofuran as predicted by the unguided (red) and two-point guided (blue) ML-approaches compared 
to the experimental dispersion curve (black). 
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Figure S10. Dispersion curves of CRG1d (N-(pyridin-2-yl)acrylamide) as predicted by the unguided (red) and two-point guided (blue) 
ML-approaches compared to the experimental dispersion curve (black). 
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Figure S11. Dispersion curves of cytidine as predicted by the unguided (red) and two-point guided (blue) ML-approaches compared to 
the experimental dispersion curve (black). 
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Figure S12. Dispersion curves of diniconazole as predicted by the unguided (red) and two-point guided (blue) ML-approaches compared 
to the experimental dispersion curve (black). 
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Figure S13. Dispersion curves of dioxacarb as predicted by the unguided (red) and two-point guided (blue) ML-approaches compared 
to the experimental dispersion curve (black). 
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Figure S14. Dispersion curves of fenuron as predicted by the unguided (red) and two-point guided (blue) ML-approaches compared to 
the experimental dispersion curve (black). 
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Figure S15. Dispersion curves of fipronil as predicted by the unguided (red) and two-point guided (blue) ML-approaches compared to 
the experimental dispersion curve (black). 
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Figure S16. Dispersion curves of flufenoxuron as predicted by the unguided (red) and two-point guided (blue) ML-approaches compared 
to the experimental dispersion curve (black). 
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Figure S17. Dispersion curves of fuberidazole as predicted by the unguided (red) and two-point guided (blue) ML-approaches compared 
to the experimental dispersion curve (black). 
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Figure S18. Dispersion curves of 4-aminobutyric acid (GABA) as predicted by the unguided (red) and two-point guided (blue) ML-
approaches compared to the experimental dispersion curve (black). 
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Figure S19. Dispersion curves of ketamine as predicted by the unguided (red) and two-point guided (blue) ML-approaches compared 
to the experimental dispersion curve (black). 
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Figure S20. Dispersion curves of midazolam as predicted by the unguided (red) and two-point guided (blue) ML-approaches compared 
to the experimental dispersion curve (black). 
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Figure S21. Dispersion curves of niacinamide (also known as nicotinamide) as predicted by the unguided (red) and two-point guided 
(blue) ML-approaches compared to the experimental dispersion curve (black). 
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Figure S22. Dispersion curves of phenyltoloxamine as predicted by the unguided (red) and two-point guided (blue) ML-approaches 
compared to the experimental dispersion curve (black). 
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Figure S23. Dispersion curves of rotenone as predicted by the unguided (red) and two-point guided (blue) ML-approaches compared to 
the experimental dispersion curve (black). 
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Figure S24. Dispersion curves of sarcosine as predicted by the unguided (red) and two-point guided (blue) ML-approaches compared 
to the experimental dispersion curve (black). 
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Figure S25. Dispersion curves of sarcosine as predicted by the unguided (red) and two-point guided (blue) ML-approaches compared 
to the experimental dispersion curve (black). 
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