Electronic Supplementary Material (ESI) for Analyst. This journal is © The Royal Society of Chemistry 2021

Supplementary Information

Caption:

- 1. Characterization of B[a]P antigens.
- 2. The antisera of immunized mice detected by *ic*ELISA.
- 3. Identification of anti-B[a]P mAb.
- 4. The cross-reactivities of anti-B[a]P mAb detected by *ic*ELISA.
- 5. Sample preparation detected by HPLC-FLD.
- 6. The optimization of the GNP- ICS assay.
- 7. Matrix effect on test strip.
- 8. The GNP- ICS assay for detection of B[a]P in tea-seed oil.

1. Characterization of B[a]P antigens

Figure S1. The UV-Vis spectrophotogram of B[a]P haptens and antigens. (a) The UV-Vis spectrophotogram of B[a]P-ol-HS-BSA/OVA; (b) The UV-Vis spectrophotogram of PBA-BSA/OVA.

2. The antisera of immunized mice detected by *ic*ELISA.

Table ST The antisera of minimumzed mile detected by telefish.					
	IC ₅₀ (ng mL ⁻¹)				
Coating antigen	Immunized by B[a]P-ol-HS -	Immunized by PBA-BSA			
	BSA				
B[a]P-ol-HS-OVA	92.7	62.7			
PBA-OVA	35.6	105.6			

Table S1 The antisera of immunized mice detected by *ic*ELISA.

3. Identification of anti-B[a]P mAb

3.1 The purification of anti-B[a]P mAb

Figure S2. The SDS-PAGE of anti-B[a]P mAb purified by CA-SA. 1, 2 represent the unpurified and purified anti-B[a]P mAb, respectively.

3.2 Titer of purified anti-B[a]P mAb

Dilution of purified anti-B[a]P mAb										
OD ₄₅₀	3×10 ³	6×10 ³	1.2×10 ⁴	2.4×10 ⁴	4.8×10 ⁴	9.6×10 ⁴	1.92×10 ⁵	3.84×10 ⁵	7.68×10 ⁵	Blank
	2.76	2.56	2.41	2.35	2.06	1.72	1.43	0.65	0.27	0.032

Table S2. Titer of purified anti-B[a]P mAb detected by ELISA.

As shown in Table S2, the titer of purified anti-B[a]P mAb was up to 7.68×10^5 .

3.3 Affinity curve for anti-B[a]P mAb

Figure S4. Affinity curve for anti-B[a]P mAb.

The average affinity constant was calculated to be 5.36×10^8 L mol⁻¹.

4. The cross-reactivities of anti-B[a]P mAb detected by *ic*ELISA

B[a]P and its	Molecular	IC ₅₀ (μ g/L)	CR (%)
analogues	structure		
B[a]P		2.51	100
B[a]P -7-ol	OH OH	1.25	200.87
Pyrene		10.1	24.72
PBA	HOOC	0.64	389.73
Chrysene		7.1	35.36
Naphthalene		> 200	< 0.01
Anthracene		156	1.61
Benz[a]anthracene		20.8	12.56
Phenanthrene		160	1.53

Table S3. The cross-reactivity of anti- B[a]P mAbs with PAH analogues determined by *ic*ELISA.

5. Sample preparation detected by HPLC-FLD

The 0.5 g oil was diluted by 3 mL *n*-hexane and cleaned-up by using a XAD-2 column (37 cm \times 1 cm i.d.), prepared by filling of XAD-2 resin of 5.56 g (dried at 60 °C for 2 h) into a Cleanert BAP-3 column. The column was rinsed with 5 mL of dichloromethane, and 5 mL of *n*-hexane, respectively before using it. The sample was added into the Cleanert BAP-3 column, and then eluted by 10 mL of *n*-hexane, and 5 mL of dichloromethane, respectively. The collected dichloromethane eluent was then

evaporated to near dryness on a rotary evaporator at 25 - 30 °C. The residue was dissolved in 1 mL of acetonitrile and ultrasonic for 10 seconds. The solution was stored at 4°C prior to use.

6. The optimization of the GNP- ICS assay

Figure S5. The optimization of the GNP- ICS assay. (a) Optimization of two coating antigen: coating 1, coating 2 represent the coating antigen PBA-OVA and PBA-BSA; 1, 2 represent the B[a]P concentration in 10% method-PBS at 0 and 25 ng mL⁻¹, respectively; (b) Optimization the concentration of coating antigen in PBS at 0.8 and 1.5 mg mL⁻¹, and optimization the concentration of GNPs-mAb, $45 = 5 \ \mu g \ mL^{-1}$, 410 = 10 $\ \mu g \ mL^{-1}$; 1, 2 represent the B[a]P concentration at 0 and 100 ng mL⁻¹, respectively; (c) Optimiation of the GNPs-mAb probe resuspension. $4^{\#} = 0.02 \ M PBS$ containing 5% trehalose, 1% BSA and 0.05% NaN₃, 1= PVP, 2= PEG, 4 = Tween-20, 11= triton X-100, and 14= ON-870. 1, 2 represent the B[a]P concentration at 0 and 10 and 100 ng mL⁻¹, respectively.

7. Matrix effect on test strip

Figure S6. The matrix interference of oil extract on GNP-ICS. $5\times,10\times,20\times$ respresent the oil extract were diluted with 10% DMSO-PBS at 5, 10, and 20 times; 1, 2 represent the B[a]P concentration at 0 and 500 ng mL⁻¹, respectively.

8. The GNP- ICS assay for detection of B[a]P in tea-seed oil

Figure S7. The GNP- ICS assay for detection of B[a]P in tea-seed oil sample. 1, 2, 3, and 4 represent the concentrations of B[a]P at 0, 200, 500, and 1000 ng mL⁻¹, respectively

Instrument conditions		HPLC-fluorescence detector Waters 1525EF system				
Spectrum	Column	a reversed-phase C18 column (Agilent Zorbax Eclipse				
transmission	electron	Plus) (4.6 ×250 mm, 5 μm)				
microscope		Column temperature: 35 °C				
Mobile Phase		A: acetonitrile, 88%				
		B: water, 12%				
Fluorescence detector		Excitation wavelength at 384 nm				
		Emission wavelength at 406 nm				
Gradient Profile	2	Time	Percentage	Percentage		
		(min)	A (%)	B (%)		
		0	88	12		
		47	88	12		
Injection Volun	ne	20 µL				
Flow velocity		1.0 mL min ⁻¹				

Table S4. Chromatogram condition for the analysis of B[a]P by HPLC with fluorescence detector.

 Table S5. The concentrations of B[a]P standard in acetonitrile detected by HPLC

 FLD.

Sample	Concentration (ng mL ⁻¹)						
	SB	S1	S2	S3	S4	S5	
B[a]P	0	0.5	1.0	5.0	10	20.0	