Supplementary Information

Real-Time Detection of Copper Contaminants in Environmental Water using Porous Silicon Fabry–Pérot Interferometer

Mike Bismuth^{1#}, *Eytan Zaltzer*^{2#}, *Muthukumar Divagar*³, *Ran Suckeveriene*⁴, *Giorgi Shtenberg*^{3*}

¹Life Sciences and Nanotechnology, Bar Ilan University, Ramat-Gan, Israel

² Epidemiology and Preventive Medicine, School of Public Health - Sackler Faculty of Medicine,

Tel-Aviv University, Tel-Aviv, Israel

³ Institute of Agricultural Engineering, ARO, The Volcani Center, Bet Dagan, Israel

⁴ Department of Water Industry Engineering, Kinneret Academic College, Israel

*Corresponding author: <u>giorgi@agri.gov.il</u> # Equal contribution

Ion	Тар	Ground	Irrigation	
	(ppm)	(ppm)	(ppm)	
Ag	< 0.0004	< 0.0004	< 0.0004	
Al	0.018	0.007	0.005	
As	< 0.007	< 0.007	< 0.007	
Ca	71.4	58.5	85.1	
Cd	< 0.0002	< 0.0002	< 0.0002	
Cr	< 0.003	< 0.003	< 0.003	
Cu	0.001	0.001	0.001	
Fe	0.027	0.039	0.012	
Hg	< 0.002	< 0.002	< 0.002	
Κ	2.37	26.7	19.9	
Mg	32.2	21.7	17.3	
Na	37.0	107.1	102.9	
Pb	< 0.003	< 0.003	< 0.003	
Zn	0.005	0.059	0.029	

 Table S1. Environmental water analysis characterization by ICP-OES

Table S2. Functionalization steps characterization through RIFTS measurements

Functionalization Steps	_{eff} OT (nm)	Intensity (a.u.)	
p-SiO ₂	15,183±58	17.0±0.2	
APTS	15,901±43	20.8±0.4	
GA	16,498±37	22.8±0.3	
(GA-PEI) ₁	16,734±46	24.8±0.3	
(GA-PEI)1-GA	17,238±31	26.7±0.2	
(GA-PEI) ₂	17,259±34	27.3±0.3	

Data are reported as mean \pm SD (n = 3).

Figure S1. Representative ATR-FTIR analysis of two sequential PEI layers immobilization onto p-SiO₂ nanostructure. The modification steps include: unmodified p-SiO₂, APTS, GA, (GA-PEI)₁, (GA-PEI)₁-GA, (GA-PEI)₂. Inset: corresponding spectra magnification of the region of interest for clarity.

Figure S2. Reflective based response of $(GA-PEI)_3$ surface with copper ions. Both, relative intensity and _{eff}OT changes vs time are monitored. The optical transducer is first pretreated with ultrapure water (pH 6.5) to obtain a stable baseline, after which 1 ppm Cu²⁺ solution is injected at a constant flow rate of 200 µL min⁻¹ using a peristaltic pump. (b) The corresponding averaged optical response of three PEI layers toward 1 ppm Cu²⁺ solution. Data are reported as mean ± SD (n = 3).

Figure S3. Reflective based response of the different surfaces (various pore sizes) modified with $(GA-PEI)_2$ toward copper ions. Both, relative intensity and _{eff}OT changes vs time are monitored for pores diameter of (a) ~30-50 nm and (b) ~40-70 nm. Both anodization steps were performed under constant current densities of 231 mA cm⁻² for 50 s and 385 mA cm⁻² for 30 s, respectively. Each optical transducer is first pretreated with ultrapure water (pH 6.5) to obtain a stable baseline, after which 1 ppm Cu²⁺ solution is injected at a constant flow rate of 200 µL min⁻¹ using a peristaltic pump.

Figure S4. Relative intensity changes vs time of $(GA-PEI)_2$ surfaces throughout the optical experiments against five different cationic solutions (a) Pb²⁺, Cr³⁺, Cd²⁺, Fe³⁺, Cu²⁺ and (b), Zn²⁺, Al³⁺, K⁺, Mg²⁺, Ca²⁺, 1 ppm each.

Figure S5. Relative intensity changes vs time of $(GA-PEI)_2$ surfaces throughout the optical experiments against four different cationic solutions simulating elevated concentrations as in real water samples. The inspected ions are Na⁺, K⁺, Mg²⁺ and Ca²⁺ (100 ppm each).

Detection method	Recognition element	LoD (ppb)	Dynamic range (ppb)	Analysis time (min)	Portability for on-site	Ref.
ICP-OES	-	0.1	1- 100,000	15	-	1
ICP-MS	-	0.007	0.05- 50,000	15	-	2
Surface plasmon resonance	Cellulose- hexadecyltrimethy l-ammonium bromide	8	10- 60,000	15	-	3
Photoluminescence	Me2Cyclen -GaAs	128	320- 3,200	30	-	4
Colorimetry	Polyaniline/ polyamide	1	1- 100,000	30	+	5
Optical fiber	Chitosan-EDTA	0.1	1-64,000	7	+	6
Refractometry	PEI modified Nanoporous Alumina	7	1,000- 100,000	45	+	7
Refractometry	PEI modified PSi	53	200- 2,000	20	+	This study

 Table S3. Label-free copper ions detection techniques

References

- 1. M. S. Rocha, M. F. Mesko, F. F. Silva, R. C. Sena, M. C. B. Quaresma, T. O. Araújo and L. A. Reis, *J. Anal. At. Spectrom*, 2011, **26**, 456-461.
- J. Djedjibegovic, T. Larssen, A. Skrbo, A. Marjanović and M. Sober, *Food Chem.*, 2012, 131, 469-476.
- 3. W. M. E. M. M. Daniyal, Y. W. Fen, J. Abdullah, A. R. Sadrolhosseini, S. Saleviter and N. A. S. Omar, *Opt. Express*, 2018, **26**, 34880-34893.
- 4. X. Huang, P. Xia, B. Liu and H. Huang, Sens. Actuators, B, 2018, 257, 853-859.
- 5. B. Ding, Y. Si, X. Wang, J. Yu, L. Feng and G. Sun, *J. Mater. Chem.*, 2011, **21**, 13345-13353.
- 6. V. T. Tran, N. H. T. Tran, T. T. Nguyen, W. J. Yoon and H. Ju, *Micromachines*, 2018, 9, 471.
- 7. S. Kaur, C. S. Law, N. H. Williamson, I. Kempson, A. Popat, T. Kumeria and A. Santos, *Anal. Chem.*, 2019, **91**, 5011-5020.