Electronic Supplementary Information

Ratiometric sensing of Zn²⁺ with a new benzothiazole-based

fluorescent sensor and living cell imaging

Qi Wu^a, LiHen Feng^a, Jian Bin Chao^b, Yu Wang^{a*}, Shaomin Shuang^{a*}

^a School of Chemistry and Chemical Engineering, Shanxi University, Taiyuan 030006, PR China

^b Scientific Instrument Center, Shanxi University, Taiyuan 030006, PR China

Fig. S1 ¹H NMR spectrum of probe BTT.

Fig. S2 ¹³C NMR of probe BTT.

Fig. S3 Mass spectrum in negative-ion mode of probe BTT.

Fig. S4 Effect of pH on the fluorescence intensity of BTT and BTT- Zn^{2+} . [BTT]=4 μ M, [Zn²⁺]=8 μ M.

Fig. S5 Time dependent fluorescence intensity of BTT (4 μ M) for Zn²⁺. [BTT]=4 μ M, [Zn²⁺]=8 μ M.

Fig. S6 Fluorescence intensity changes of BTT upon alternate addition of Zn²⁺ and EDTA. [BTT]= 4µM, [Zn²⁺]=

4μM, [EDTA]=4μM.

Fig. S7 Cell cytotoxic effect of BTT on HeLa cells.

^{*} Corresponding authors. Tel.: +86 351 7010588; fax: +86 351 7011688.

E-mail: wangyu1168@sxu.edu.cn (Y. Wang), smshuang@sxu.edu.cn(S.M.Shuang).

Fig. S3 Mass spectrum in negative-ion mode of probe BTT.

Fig. S4 Effect of pH on the fluorescence intensity of BTT and BTT- Zn^{2+} . [BTT]=4 μ M, [Zn^{2+}]=8 μ M.

Fig. S5 Time dependent fluorescence intensity of BTT (4 μ M) for Zn²⁺. [BTT]=4 μ M, [Zn²⁺]=8 μ M.

Fig. S6 Fluorescence intensity changes of BTT upon alternate addition of Zn^{2+} and EDTA. [BTT]= 4 μ M, [Zn^{2+}]=

4µM, [EDTA]=4µM.

Fig. S7 Cell cytotoxic effect of BTT on HeLa cells. Values are the mean \pm s.d. For n = 5.