A glycan-based plasmonic sensor for the diagnostic of prostate cancer

Mathieu Lamarre^{a,b}, Thomas Tremblay^a, Marc-Antoine Bansept^{a,b}, Karine Robitaille^c, Vincent Fradet^c, Denis Giguère^a, and Denis Boudreau* ^{a,b}

^aDepartment of Chemistry, Université Laval, Québec, QC Canada. ^bCentre for Optics, Photonics and Lasers (COPL), Université Laval, Québec, Canada. ^cFaculty of Medicine, Department of Surgery, Université Laval, Centre Hospitalier Universitaire (CHU) de Québec Research Centre, Oncology Division, Quebec, Canada.

*E-mail: denis.boudreau@chm.ulaval.ca; Fax: 418-656-7916; Tel: 418-656-3287.

1. Experimental Section	S2
2. NMR spectra of compounds	S5
3. References	S9

1. Experimental Section

A) Synthesis of Tn antigen

S-acetyl-mercaptohexadecanoyl-O-(2-acetamido-3,4,6-tri-O-acetyl-2-deoxy-α-D-

galactopyranosyl)-L-threonine methyl ester (7). To a solution of S-acetylmercaptohexadecanoic acid (194.3 mg, 0.588 mmol, 2 eq.) in DMF (1 mL) at room temperature, was added successively HATU (223.6 mg, 0.588 mmol, 2 eq.), HOAt (80.0 mg, 0.588 mmol, 2 eq.) and DIPEA (102 µL, 0.588 mmol, 2 eq.). The mixture was stirred at room temperature for 15 minutes. Then, a solution of O-(2-acetamido-3,4,6-tri-O-acetyl-2-deoxy- α -D-galactopyranosyl)-L-threonine methyl ester (136.0 mg, 0.294 mmol, 1 eq.) in DMF (1 mL) was added and the resulting mixture was stirred for 18 hours at room temperature. The mixture was then quenched with the addition of water (10 mL) and extracted with EtOAc (3×20 mL). The combined organic phases were washed with a saturated aqueous NaHCO₃ solution (30 mL) and a saturated aqueous NaCl solution (30 mL). The organic solution was dried over MgSO₄, filtered, and concentrated under reduced pressure. The obtained crude was purified by flash column chromatography (silica gel, EtOAc/Et₂O, 1:1 \rightarrow 3:1) to give 7 as a colorless solid (217 mg, 0.280 mmol, 95% yield). $R_f = 0.28$ (silica, EtOAc/Et₂O, 3:1); $[\alpha]_D^{25} = 68.9$ (c 0.4, CHCl₃); IR (ATR, NaCl) v 3306, 2925, 2853, 1750, 1372, 1232, 1048 cm⁻¹; ¹H NMR (500 MHz, CDCl₃) δ 6.17 (d, J = 9.2 Hz, 1H, NHThr), 5.80 (d, J = 9.4 Hz, 1H, NHAc), 5.36 (d, J = 2.2 Hz, 1H, H4), 5.08 (dd, J = 11.4, 3.2 Hz, 1H, H3), 4.87 (d, J = 3.4 Hz, 1H, H1), 4.76 (dd, J = 9.2, 2.0 Hz, 1H, CH α Thr), 4.55 (ddd, J = 11.2, 3.5 Hz, 1H, H2), 4.25 (qd, J = 6.3, 2.1 Hz, 1H, CH β Thr), 4.19 (td, J = 6.9, 5.6, 0.8 Hz, 1H, H5), 4.10 (dd, J = 11.4, 5.5 Hz, 1H, H6a), 4.05 (dd, J = 11.4, 7.3 Hz, 1H, H6b), 3.73 (s, 3H, CO_2CH_3), 2.85 (t, J = 7.2 Hz, 2H, CH_2), 2.34 (t, J =7.6 Hz, 2H, CH₂), 2.32 (s, 3H, COCH₃), 2.16 (s, 3H, COCH₃), 2.03 (s, 3H, COCH₃), 2.02 (s, 3H, COCH₃), 2.00 (s, 3H, COCH₃), 1.68 (p, J = 7.7 Hz, 2H, CH₂), 1.55 (p, J = 7.3 Hz, 2H, CH₂), 1.38 – 1.21 (m, 22H, 11 × CH₂), 1.28 (d, J = 6.4 Hz, 3H, CH₃ γ Thr). ¹³C NMR (126 MHz, CDCl₃) δ 196.3, 173.9, 171.7, 171.3, 170.7, 170.5, 170.5 (7C, 7 × CO), 100.2 (1C, C1), 77.8 (1C, CHβThr), 68.6 (1C, C3), 67.4 (2C, C4, C5), 62.3 (1C, C6), 56.3 (1C, CHαThr), 52.8 (1C, CO₂CH₃), 47.7 (1C, C2), 36.7 (1C, CH₂), 30.8 (1C, COCH₃), 29.8, 29.8, 29.7, 29.7, 29.6, 29.6, 29.5, 29.5, 29.3, 29.3, 29.0, 25.8 (14C, 14 × CH₂), 23.3, 20.93, 20.89, 20.8, (4C, $4 \times COCH_3$), 18.3 (1C, CH₃γThr) ppm. HRMS calcd for C₃₇H₆₃N₂O₁₃S⁺ 775.4037, found 775.4045.

S-mercaptohexadecanoyl-O-(2-acetamido-2-deoxy-a-D-galactopyranosyl)-Lthreonine methyl ester (8). To a solution of 7 (60.4 mg, 0.078 mmol, 1 eq.) in methanol (0.78 mL) at room temperature, was added dropwise acetyl chloride (20 µL, 0.312 mmol, 4 eq.). The resulting mixture was stirred until the disappearance of starting material and intermediate products (~5h). The solvent was concentrated under pressure. The obtained crude was purified by flash column chromatography (silica gel, MeOH/CH₂Cl₂, $1:9 \rightarrow 1:4$) to give 8 as a white solid (33.9 mg, 0.056 mmol, 72% yield). $R_f = 0.20$ (silica, MeOH/CH₂Cl₂, 2:8); $[\alpha]_D^{25} = 38.6$ (*c* 0.2, MeOH); IR (ATR, NaCl) v 3284, 2923, 2853, 1743, 1651, 1462, 1025 cm⁻¹; ¹H NMR (500 MHz, CD₃OD) δ 4.77 (d, J = 4.0 Hz, 1H, H1), 4.63 (d, J = 1.9 Hz, 1H, CH α Thr), 4.39 (qd, J = 6.3, 1.9 Hz, 1H, CH β Thr), 4.24 (dd, J =11.0, 3.9 Hz, 1H, H2), 3.88 (d, J = 3.2 Hz, 1H, H4), 3.86 (td, J = 6.9, 5.6, 0.8 Hz, 1H, H5), 3.73 (dd, J = 11.4, 6.8 Hz, 1H, H6a), 3.71 (dd, J = 11.0, 3.2 Hz, 1H, H3), 3.70 (s, 3H, J) CO_2CH_3 , 3.68 (dd, J = 11.4, 5.3 Hz, 1H, H6b), 2.49 (t, J = 7.2 Hz, 2H, CH_2), 2.36 (t, J = 11.4, 5.3 Hz, 1H, H6b), 2.49 (t, J = 7.2 Hz, 2H, CH_2), 2.36 (t, J = 11.4, 5.3 Hz, 1H, H6b), 2.49 (t, J = 7.2 Hz, 2H, CH_2), 2.36 (t, J = 11.4, 5.3 Hz, 1H, H6b), 2.49 (t, J = 7.2 Hz, 2H, CH_2), 2.36 (t, J = 11.4, 5.3 Hz, 1H, H6b), 2.49 (t, J = 7.2 Hz, 2H, CH_2), 2.36 (t, J = 11.4, 5.3 Hz, 1H, H6b), 2.49 (t, J = 7.2 Hz, 2H, CH_2), 2.36 (t, J = 11.4, 5.3 Hz, 1H, H6b), 2.49 (t, J = 7.2 Hz, 2H, CH_2), 2.36 (t, J = 11.4, 5.3 Hz, 1H, H6b), 2.49 (t, J = 7.2 Hz, 2H, CH_2), 2.36 (t, J = 11.4, 5.3 Hz, 1H, H6b), 2.49 (t, J = 7.2 Hz, 2H, CH_2), 2.36 (t, J = 10.4, 2H, CH_2), 2H, CH_2 , 2H, CH_2), 2H, CH_2 , 2H, CH_2), 2H, CH_2), 2H, CH_2), 2H, CH_2), 2H, CH_2), 2H, CH_2), 2H, CH_2), 2H, CH_2), 2H, CH 7.5 Hz, 2H, CH₂), 2.04 (s, 3H, COCH₃), 1.67 (p, J = 7.4 Hz, 2H, CH₂), 1.59 (p, J = 7.3 Hz, 2H, CH₂), 1.43 – 1.28 (m, 22H, 11 × CH₂), 1.26 (d, J = 6.4 Hz, 3H, CH₃ γ Thr) ppm; ¹³C NMR (126 MHz, CD₃OD) δ 176.7, 173.9, 172.2 (3C, 3 × CO), 100.7 (1C, C1), 76.6 (1C, CHβThr), 72.9 (1C, C5), 70.3 (1C, C4), 69.7 (1C, C3), 62.8 (1C, C6), 57.8 (1C, CHαThr), 52.8 (1C, CO₂CH₃), 51.2 (1C, C2), 36.8, 35.3, 30.79, 30.78, 30.76, 30.74, 30.72, 30.69, 30.5, 30.4, 30.2, 29.4, 27.1, 25.0 (14C, 14 × CH₂), 23.2 (1C, COCH₃), 19.3 (1C, CH₃γThr) ppm. HRMS calcd for $C_{29}H_{55}N_2O_9S^+$ 607.3623, found 607.3618.

B) Determination of apparent dissociation constant K_d

The value of K_d for anti-Tn IgM antibodies on the PDA@Tn@PEO and PDA@PEO surfaces was calculated from the Langmuir isotherm (eqn (1)) fitted to the experimental SPR data, where $\Delta\lambda_{SPR}$ is the plasmon shift measured at 150 s for different ligand concentrations (see example below) and where $K=1/K_d$.^{5,6}

$$\Delta\lambda_{\rm SPR} = \frac{K[\text{ligand}]\Delta\lambda_{\rm max}}{1 + K[\text{ligand}]} \tag{1}$$

S6

3. References

1) Chen, H.; Xian, T.; Zhang, W.; Si, W.; Luo, X.; Zhang, B.; Zhang, M.; Wang, Z.; Zhang, J. *Carbohyd. Res.* **2016**, *431*, 42.

2) Plattner, C.; Höfener, M.; Sewald, N. Org. Lett. 2011, 13, 545.

3) Miermont, A.; Barnhill, H.; Strable, E.; Lu, X.; Wall, K. A.; Wang, Q.; Finn, M. G.; Huang, X. *Chem. Eur. J.* **2008**, *14*, 4939.

4) Tewari, N.; Nizar, H.; Mane, A.; George, V.; Prasad, M. Synth. Commun. 2006, 36: 1911.

5) Bolduc, O. R.; Lambert-Lanteigne, P.; Colin, D. Y.; Zhao, S. S.; Proulx C.; Boeglin, D.;

Lubell, W. D.; Pelletier, J. N.; Féthière, J.; Ong, H.; Masson, J. F. *Analyst* **2011**, *136*, 3142. 6) Funari, R.; Chu, K.Y.; Shen, A. Q. *Biosens. Bioelectr.* **2020**, *169*, 112578.