Supporting Information for

Exploring the contribution of charge species at outer surface to

ion current signal of nanopores: a theoretical stud

Haowei Mao^a, Qun Ma^a, Hongquan Xu^a, Lei Xu^a, Qiujiao Du^b, Pengcheng Gao^{a, *}, Fan

Xia^a

^aEngineering Research Center of Nano-Geomaterials of Ministry of Education, Faculty

of Materials Science and Chemistry, China University of Geosciences, Wuhan 430074,

P. R. China. ^bSchool of Mathematics and Physics, China University of Geosciences,

Wuhan 430074, P. R. China.

* Correspondence to: pcgao@cug.edu.cn;

Contents

Supporting Information for	1
1. Supplementary Figures	1
Figure S1. The models used in the numerical simulations	1
Figure S2. The I-V curves of different charge density	2
Figure S3. The effect of the base diameter of nanopore on the ion current signal.	2
Figure S4. The effect of the tip diameter of nanopore on the ion current signal	3
Figure S5. The effect of the ion strength of electrolyte on the ion current signal	4
2. Supplementary Table	5

1. Supplementary Figures

Figure S2. The I-V curves of different charge density. (a) I-V curves of low charge density. (b) I-V curves of medium charge density.

Figure S3. The effect of the base diameter of nanopore on the ion current signal. (ad) The change ratio of ion current signal of different base diameter of nanopore with different surface charge.

Figure S4. The effect of the tip diameter of nanopore on the ion current signal.(a-d) The change ratio of ion current signal of different tip diameter of nanopore with different surface charge.

Figure S5. The effect of the ion strength of electrolyte on the ion current signal.(a-d) The change ratio of ion current signal with different the ion strength of electrolyte in different surface charge.

2. Supplementary Table

Model	Boundary	Dilute Matter Transfer (Nernst-Planck Equation)	Electrostatic (Poisson Equation)
surface charge density model	1	$c(K^+) = c(Cl^-) = c_0$	V_b V
	2	$c(K^+) = c(Cl^-) = c_0$	0 V
	3, 4, 5, 6, 7, 8, 11, 12, 13, 14, 15, 16, 19, 20	$\vec{n}\cdot\vec{f_{\iota}}=0$	Zero charge
	9, 10, 17, 18, 21, 22	$\vec{n}\cdot\vec{J_{\iota}}=0$	$ec{n}\cdot abla arphi=-rac{\sigma_s}{arepsilon}$
space charge density model	1	$c(K^+) = c(Cl^-) = c_0$	$V_b V$
	2	$c(K^+) = c(Cl^-) = c_0$	0 V
	3, 4, 5, 6, 7, 8, 11, 12, 13, 14, 15, 16, 19, 20	$\vec{n}\cdot\vec{J_l}=0$	Zero charge
	9, 10, 17, 18, 21, 22	$\vec{n}\cdot\vec{J_{\iota}}=0$	σ'_s
	Nanoconfined space	_	$ abla^2 arphi = -rac{ ho}{arepsilon}$

Table S1. Boundary conditions of surface charge density model and space charge density model.