Supplementary Information

Near infrared imaging of intracellular GSH by AuNCs@MnO₂ core-shell nanoparticles based on absorption competition mechanism

Haiyang Yao,^a Difei Jiang,^a Gaoqiu Dong,^b Jiamin Sun,^a Shasha Sun,^a

Lingling Li,^b Fenfen Zheng,^{*,a} and Weiwei Xiong^{*,a,c}

^aSchool of Environmental & Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang, Jiangsu 212003, China.

^bSchool of Pharmacy, Nanjing Medical University, Nanjing 211 166, China.

^cShandong Key Laboratory of Biochemical Analysis, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042, China.

E-mail:zhengfenfen@just.edu.cn; xiongweiwei@just.edu.cn.

Fig. S1 (A) TEM image of AuNCs. (B) The corresponding size

distribution histogram of AuNCs.

Fig. S2 Photographs of AuNCs solutions under UV light (302

Fig. S3 Two photos of the 50 mL reaction vessel for preparation of AuNCs doped SiO_2 (1) and AuNCs@MnO₂ (2).

Fig. S4 The corresponding size distribution histogram of AuNCs doped SiO_2 (A) and AuNCs@MnO₂ (B).

Fig. S5 XRD spectrum of AuNCs@MnO₂.

Fig. S6 The FT-IR spectroscopy AuNCs@MnO₂.

Fig. S7 UV-vis absorption spectrum of AuNCs doped SiO₂.

Fig. S8 (A) Fluorescence spectra of AuNCs@MnO₂ with different incubation times. (B) Fluorescence spectra of AuNCs@MnO₂ with different pH. (C) Point-line plot between the PL intensity at 652 nm and incubation time. (D) A histogram between the F/F_0 at 652 nm and pH (F_0 and F delegate the PL intensity in the absence and in the presence of GSH, respectively).

Fig. S9 The standard curve of Mn^{2+} and linear fitting of Mn^{2+} prototype.

Fig. S10 Point-line plot of the $(F-F_0)/F_0$ at 652 nm and GSH concentrations (F_0 and F delegate the PL intensity in the absence and in the presence of GSH, respectively).

Fig. S11 Depth fluorescence images of AuNCs@MnO₂ in the tissues were obtained in the z-scan mode (from 0 to 450 μ m; step size: 2 μ m). The images were obtained at 600-670 nm (red channel). Scale bars: 50 μ m.

Table S1. Comparison of the proposed method with othermethods for GSH detection

Method	Linear range(µmol L ⁻¹)	Detection Limit(µmol L ⁻¹)	React time(min)	Reference
HPLC	0.75-10	0.5	/	1
Surface Enhanced Raman	0.1-0.8	0.05	5	2
Scattering				
Surface Enhanced Raman	0.05-0.7	0.04	45	3
Scattering				
Colorimetry	0.05-80	0.05	10	4
Colorimetry	0.1-10	0.095	30	5
Electrochemiluminescence	1.58-200	0.62	/	6
Electrochemiluminescence	0.3-500	2.2	/	7
Fluorometry	2-90	0.0204	20	8

Fluorometry	0.5-100	0.15	6	9
Fluorometry	10-250	36	180	10
Fluorometry	0.03-60	/	120	11
Fluorometry	1-50	0.943	20	12
Fluorometry	13.3-417	0.153	/	13
Fluorometry	0.1-60	0.035	3	14
Fluorometry	2-5000	0.67	120	This work

Reference

- G. P. McDermott, P. S. Francis, K. J. Holt, K. L. Scott, S. D. Martin, N. Stupka, N. W. Barnett and X. A. Conlan, *Analyst*, 2011, 136, 2578-2585.
- 2. G. G. Huang, X. X. Han, M, K. Hossain and Y. Ozaki, Anal Chem., 2009, 81, 5881-5888.
- 3. L. Ouyang, L. Zhu, J. Jiang and H. Tang, Anal. Chim. Acta., 2014, 816, 41-49.
- P. J. Ni, Y. J. Sun, H. C. Dai, J. T. Hu, S. Jiang, Y. L. Wang and Z. Li, *Biosens. Bioelectron.*, 2015, 63, 47-52.
- 5. Q. Wang, H. Pang, Y. Dong, Y. Chi and F. Fu, *Microchimica Acta.*, 2018, 185, 291-298.
- 6. Y. Ji, Y. Ma and X. Sun, Anal. Methods., 2013, 5, 1542-1547.
- 7. P.Lee and R. Compton, *Electroanalysis*, 2013, **25**, 1613-1620.
- 8. C. Qbwa, C. Cjza and L. Qian, Dyes and Pigments, 2020, 176, 108189.
- 9. X. Yan, Y Song and C Zhu, ACS Applied Materials & Interfaces., 2016, 32, 05465.
- 10. L. Hu, X. Wei, J. Meng, X. Wang, X. Chen and J. Wang, Sens. Actuators B: Chem., 2018, 268, 264-269.
- 11. M. Wei, P. Yin, Y. Shen, L. Zhang, J. Deng, S. Xue, H. Li, B. Guo, Y. Zhang and S. Yao, *Chem. Commun.*, 2013, **49**, 4640-4642.
- 12. J. Pan, Z. Zheng, J. Yang, Y. Wu, F. Lu, Y. Chen and W. Gao, Talanta, 2017, 166, 1-7.
- H. Ma, X. Li, X. Liu, M. Deng, X. Wang, A. Iqbal and W. Qin, Sens. Actuators B: Chem, 2018, 255, 1687-1693.
- 14. H. Li, R. Xie and C. Huang, Sensors and Actuators B Chemical., 2020, 321, 128518.