Glucose Oxidase Decorated Fluorescent Metal-Organic Frameworks as Biomimetic Cascade Nanozymes for Glucose Detection Through Inner Filter Effect

Wenjie Jing, Fanbo Kong, Sijia Tian, Mincong Yu, Yunchao Li, Louzhen Fan, Xiaohong Li*

Key Laboratory of Theoretical and Computational Photochemistry, Ministry of Education, College of Chemistry, Beijing Normal University, Beijing, 100875, China

Email: lxhxiao@bnu.edu.cn

Experiments

Nitrogen sorption isotherms and Brunauer–Emmett–Teller (BET) surface areas were measured at 77 K with an ASAP 2020 physisorption analyzer (USA).

Electron spin resonance (ESR) spectra were collected using a Bruker X-band A200 with 5,5-dimethyl-1-pyridine-N-oxide (DMPO) as a trapping agent.

Fourier transform infrared (FT-IR) data were recorded on an American Nicolet AVATAR 360 FT-IR spectrometer.

Fig. S1 (a) N_2 adsorption-desorption curves of NH_2 -MIL-101, (b) pore size distribution curves of NH_2 -MIL-101.

Fig. S2 EDC-/NHS-induced covalent reaction equation of NH₂-MIL-101 and GOx.

Fig. S3 HAADF-STEM image of GOx and NH₂-MIL-101 through simply mixing (a), EDS elemental mappings of Fe (b) and P (c).

Fig. S4. FT-IR spectra of NH₂-MIL-101, GOx and GOx@NH₂-MIL-101.

To further verify the covalent reaction between NH_2 -MIL-101 and GOx, the FT-IR spectra was shown in Fig. S4. For NH_2 -MIL-101, the characteristic peak at 2933 cm⁻¹ was attributed to N–H stretching vibration of the amine moieties. For GOx, the characteristic peak at 1654 cm⁻¹ was corresponding to the stretching vibration of -C=O in carboxyl groups. For GOx@NH₂-MIL-101, the characteristic peak at 2933 cm⁻¹ and 1654 cm⁻¹ were significantly reduced, and a new characteristic peak appeared at 1618 cm⁻¹, which could be attributed to the vibrational stretching of -C=O in the amide groups. The results showed that GOx was loaded on NH_2 -MIL-101 through amidation coupling reaction.

Fig. S5 Fluorescence spectra of NH₂-BDC, NH₂-MIL-101 and GOx@NH₂-MIL-101. The inset of NH₂-BDC, NH₂-MIL-101 and GOx@NH₂-MIL-101 under UV excitation.

Fig. S6 ESR spectra of DMPO+H₂O₂, DMPO+H₂O₂+ GOx@NH₂-MIL-101, DMPO +Glucose+ GOx@NH₂-MIL-101.

As shown in Fig. S6, in the absence of $GOx@NH_2$ -MIL-101 and glucose, no ESR signal was observed. In the presence of $GOx@NH_2$ -MIL-101 and H_2O_2 , remarkable characteristic peaks were detected, corresponding to the typical DMPO-•OH with an intensity ratio of 1 : 2 : 2 : 1, suggesting the generation of •OH. Alternatively, in the presence of $GOx@NH_2$ -MIL-101 and glucose, the same characteristic peaks were also detected.

Fig. S7 Steady-state kinetic analysis of the GOx@NH₂-MIL-101.

Table S1. The kinetic parameters of GOx@NH₂-MIL-101

Nanozyme	Substrate	K _m (mmol)	V _{max} (mol·L·s⁻
GOx@NH ₂ -MIL-	OPD	0.6287	2.14×10-6
101	H_2O_2	0.4287	3.29×10 ⁻⁶

Fig. S8 (a) Fluorescence spectra of $GOx@NH_2$ -MIL-101-OPD-glucose system varies with reaction time, (b) pH-dependent relative activity, (c) temperature-dependent relative activity, (d) reproducibility and (e) sensitivity after 5 cycles of $GOx@NH_2$ -MIL-101 with OPD as substrates. Error bars represent the standard deviations from at least 3 measurements.