Supporting Information

Electrochemiluminescence of Ru(bpy)₃²⁺/Thioacetamide and its Application for Sensitive Detection of Hepatotoxic Thioacetamide

Shimeles Addisu Kitte,^[a,b], Fuad Abduro Bushira,^[a,b,c], Haijuan Li,^[a] and Yongdong Jin*^[a,c]

- ^[a]State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, P. R. China
- ^[b]Department of Chemistry, College of Natural Sciences, Jimma University, P. O. Box 378, Jimma, Ethiopia

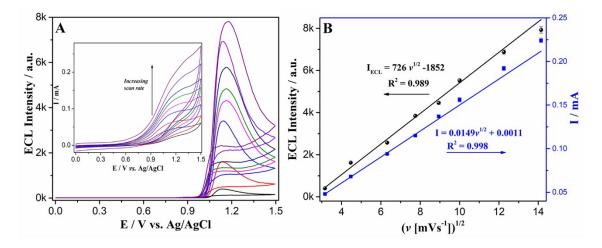
^[c] University of Science and Technology of China, Hefei 230026, P. R. China

E-mail: ydjin@ciac.ac.cn

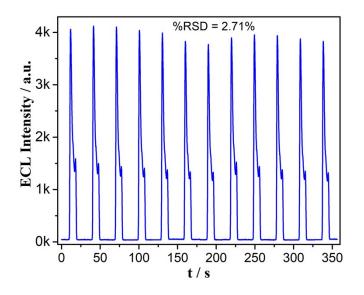
Table of Content

Calculation of Limits of Detection (LOD)
Figure S1: ECL emission intensity and cyclic voltammograms (the inset) of 1 mM $\text{Ru}(\text{bpy})_3^{2+}$ and, 0.5 mM TAA at scan rates: 10, 20, 40, 60, 80, 100, 150 and 200 mVs ⁻¹ (A) and the linear relationship of TAA between the ECL intensity or the anodic current and the square root of the scan rate ($v^{1/2}$) (B) measured at the GCE in 0.1 M PBS pH 7.5.
Figure S2. The ECL stability of solution containing 1 mM $Ru(bpy)_3^{2+}$ and 0.5 mM TAA measured at the GCE in 0.1 M PBS pH 7.5S3
Figure S3. Chronoamperometric ECL emission signals of the $Ru(bpy)_3^{2+}$ -TAA ECL system on additions of different concentration of TAA in orange juice and waste water samples. (Inset: A bar graph showing the %recovery on additions of different concentration of TAA)
Table S1: Real sample analysis results of TAA in Orange juice and waste water samples.
Table S2: Repeatability and reproducibility study for Ru(bpy) ₃ ²⁺ -TAA ECL SystemS5 References

Calculation of Limits of Detection (LOD)


LOD was calculated as follows.^{1,2} The lowest distinguishable signal S_m is calculated as the sum of the average blank signal X_{bl} plus a multiple k of the standard deviation of the blank (σ_{bl}). That is

The corrected signal, $S_m - X_{bl}$ is proportional to sample concentration.


 $S_m - X_{bl} = m \times sample \ concentration....(2)$

where *m* is the slope from the calibration curve. Substituting X_{bl} from Eq.(1) for S_m in Eq.(2), LOD can be obtained.

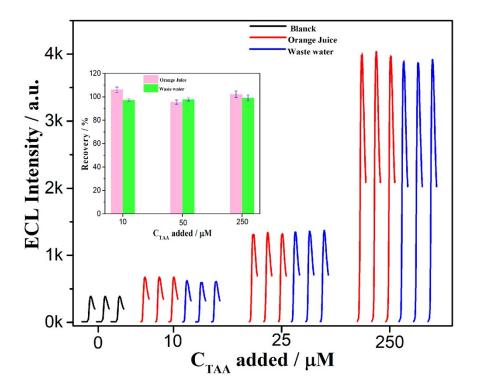

 $LOD = \frac{3\sigma}{m}....(3)$

Figure S1: ECL emission intensity and cyclic voltammograms (the inset) of 1 mM $\text{Ru}(\text{bpy})_3^{2+}$ and, 0.5 mM TAA at scan rates: 10, 20, 40, 60, 80, 100, 150 and 200 mVs⁻¹ (A) and the linear relationship of TAA between the ECL intensity or the anodic current and the square root of the scan rate ($v^{1/2}$) (B) measured at the GCE in 0.1 M PBS pH 7.5.

Figure S2. The ECL stability of solution containing 1 mM $Ru(bpy)_3^{2+}$ and 0.5 mM TAA measured at the GCE in 0.1 M PBS pH 7.5.

Figure S3. Chronoamperometric ECL emission signals of the $Ru(bpy)_3^{2+}$ -TAA ECL system on additions of different concentration of TAA in orange juice and waste water samples. (Inset: A bar graph showing the %recovery on additions of different concentration of TAA).

Sample	Detected	Added	Found	RSD	Recovery
	(µM)	(µM)	(µM)	(%)	(%)
	0	-	-	3.2	-
Orange		10	10.6	2.4	106.0
Juice		50	47.75	1.79	95.5
		250	255.59	2.9	102.2
	0	-	-	-	-
Waste		10	9.72	1.06	97.2
Water		50	48.89	1.35	97.78
		250	247.82	2.52	99.13

Table S1: Real	sample analysis results	of TAA in Orange juice and waste water	samples.

Precision	Conc. of TAA (µM)	%Recovery (mean)	%RSD
Repeatability	50	99.04	1.54
(Intra-day)	100	97.64	2.87
(Indu uuy)	500	105.33	2.25
Reproducibility	50	97.71	2.86
(Inter-day)	100	104.62	3.21
	500	97.12	3.52

Table S2: Repeatability and reproducibility study for Ru(bpy)₃²⁺-TAA ECL System.

References

(1) Harris, D. C. *Quantitative Chemical Analysis*, 8th ed.; W. H. Freeman and Company, 2010.

(2) Douglas A. Skoog; F. James Holler; Crouch, S. R. *Principles of Instrumental Analysis*, 7th ed.; Cengage Learning, 2016.