Supplementary Information

Construction of A Near-infrared Fluorescent Probe for Ratiometric Imaging of

Peroxynitrite during tumor progression

Zan Li*, Jiao Lu, Qing Pang, Jinmao You*

Key Laboratory of Life-Organic Analysis of Shandong Province, School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu 273165, P.R. China.

E-mail: lilizanzan@163.com; jmyou6304@163.com

Supplementary Information1
Materials
Apparatus
Determination of the in vitro detection limit
Determination of Absolute quantum yields4
Generation of ROS/RNS
Information of confocal imaging
Histopathological Analyses
Imaging in vivo5
Figure S1 Synthesis of CDMS and proposed responding mechanisms
Figure S2 UV-vis absorption and fluorescence spectra of CDMS, CDMS + ONOO ⁻ and
CDMSO
Figure S3 Fluorescence quantum yields of CDMS and CDMSO7
Figure S4 The fluorescence life time spectra of CDMS, CDMS + ONOO- and
CDMSO7
Figure S5 The fluorescence life time of CDMS, CDMS + ONOO ⁻ and CDMSO7
Figure S6 Competitive fluorescence responses of 10 µM the CDMS 7
Figure S7 Investigation on the pH stability of CDMS8
Figure S8 Photophysical of CDMS and CDMSO in different solvents
Figure S9 HLPC analysis for the reaction of CDMS to ONOO ⁻
Figure S10 Cytotoxicity of CDMS
Figure S11 H&E staining of main
organs10
Figure S12 ESI-MS spectra of CDM
Figure S13 ESI-MS of CDMS10
Figure S14 ESI-MS spectra of CDMSO11
Figure S15 ¹ H NMR of CDM11
Figure S16 ¹³ C NMR of CDM
Figure S17 ¹ H NMR of CDMS
Figure S18 ¹³ C NMR of CDMS 13
Figure S19 ¹ H NMR of CDMSO
Figure S20 ¹³ C NMR of CDMSO14
Reference

Table of Contents

Materials

All the reagents and materials in our experiments, including 2-(4-Diethylamino -2hydroxybenzoyl) benzoicacid, cyclohexanone, 4-(Methylthio)benzaldehyde, 3morpholinosydnoniminehydrochloride (SIN-1), 3,3-bis(aminoethyl)-1-hydroxy -2oxo-1-triazene (NOC-18), menadione sodium bisulfite (MSB), apocynin, interferongamma(IFN- γ), aminoguanidine (AG), FeTMPyP, Lipopolysaccharides (LPS) and phorbol-12-myristate-13-acetate (PMA) were obtained from Sigma-Aldrich (USA). Concentrated H₂SO₄, perchloric acid were purchased from Energy Chemical Co., Ltd (Shanghai, China). Dimethyl sulfoxide (DMSO), Methanol, Ethanol were analytical grade without further purification. The stock solution of **CDMS** was prepared in dimethyl sulfoxide (DMSO) at the concentration of 1 mM and reserved in refrigerator. Analytical condition is the phosphate buffered saline (PBS) solution (20 mM, pH=7.4, with 0.1% DMSO).

Apparatus

NMR spectra were measured on a Bruker AVANCEIIIHD 500 MHz (¹H NMR 500 MHz, ¹³ C NMR 125 MHz) spectrometers at 37 ± 1 °C with TMS as the internal standard. Mass spectrometery data were obtained on Agilent 1290/6545 UHPLC-Q-TOF mass spectrometer. Absorption spectra were obtained on the UV-vis spectrophotometer (Shimadzu, UV-3600 plus). Fluorescence spectra were determined on a fluorescence spectrometer (Edinburgh, FLS 1000). Fluorescence imaging were acquired using a laser scanning confocal microscope (Olympus FV3000) with an objective lens (× 60). Intracellular fluorescence images were collected by PerkinElmer IVIS® Lumina XR Series III System. Mice pathological splices were imaged by Nikon Model Eclipse Ci-L microscope. Ultrapure water was prepared using a Milli-Q A10 system. All pH measurements were made with a JENCO 6230 M pH meter.

Determination of the in vitro detection limit

The limit of detection was calculated based on the fluorescence titration curve of **CDMS**. The fluorescence intensity of **CDMS** was measured by twelve times and the standard deviation of blank measurement was obtained. The detection limit was calculated with the following equation: $LOD= 3\sigma/k$. Where σ is the standard deviation of blank measurement, k is the slop between the fluorescence intensity versus ONOO⁻ concentrations.

Determination of Absolute quantum yields

CDMS was diluted to 10 μ M for absolute quantum yields (QY), and the determination was measured by fluorometer (Edinburgh, FLS 1000). For **CDMS**, $\lambda_{ex} = 500$ nm.

Generation of ROS/RNS

The sources of ROS/RNS are described as follows, H_2O_2 solution was purchased from Sigma-Aldrich and diluted before using. KO₂ was dissolved in DMSO to generate superoxide (O₂⁻⁻).¹ Potassium Nitroprusside Dihydrate was used to generate •NO. *tert*-butyl hydroperoxide (TBHP) was diluted from 70 % stock solution.² The source of NaOC1 was from NaClO solution that contains 5% available chlorine. Hydroxyl radical (•OH) was generated by Fenton reaction. Briefly, ferrous chloride (FeCl₂) was added in the presence of 10 equiv. of H₂O₂, the concentration of •OH was equal to the Fe(II) concentration.³ Peroxynitrite (ONOO⁻) solution was synthesized according to the reported literature. Simply, hydrogen peroxide (0.7 M) was firstly acidified with hydrochloric acid (0.6 M), and then mixed with sodium nitrite (0.6 M). Finally, sodium hydroxide (1.5 M) was added within 1-2 seconds to make the solution alkaline. A short column of manganese dioxide was used to remove excess hydrogen peroxide. The concentration of ONOO⁻ was determined by measuring the absorption of the solution at 302 nm. The ONOO⁻ concentration was estimated by using an extinction coefficient of 1670 ± 50 cm⁻¹M⁻¹ at 302 nm.⁴

Information of confocal imaging

Fluorescent images were acquired on an Olympus FV3000 confocal laser-scanning microscope. Fluorescence collection windows for red channel: 650–720 nm (λ_{ex} =594 nm), green channel: 520–590 nm (λ_{ex} = 488 nm), and blue channel: 430–480 nm (λ_{ex} =405 nm). Cells were plated in the culture dish and allowed to adhere for 24 h before imaging. Cell nucleus dye 4, 6-diamidino-2-phenylindole (DAPI, 100 ng/mL, 1 μ L) and **CDMS** (10 μ L, 1.0 mM) were simultaneously added to the culture plates which were filled with 1 mL fresh complete medium. Cell imaging was carried out after washing cells with corresponding medium for three times after the different treatment.

Histopathological Analyses

In this work, all animal experiments were performed according to the guidelines issued by The Ethical Committee of Qufu Normal University. H&E staining was carried out according to a protocol provided by the vendor (BBC Biochemical). The tumors of different sizes in mice model were excised, subsequently the 8 µm of tumor cryogenic slides and normal tissue were prepared and into fixed in 10% formaldehyde. After washing with running water, the slides were treated with gradient concentrations of alcohol (100 %, 95 % and 70 %), each for 20 s. The hematoxylin staining was performed for 3 min and washed with water for 1 min. The eosin staining was performed for 1 min. The slides were washed, treated with xylene, and mounted with Canada balsam. The images were captured using a Nikon Eclipse 90i.

In Vivo Imaging

The *in vivo* imaging experiments were performed in accordance with the guidelines issued by The Ethical Committee of Qufu Normal University. Mice were anesthetized prior to injection and during imaging via inhalation of isoflurane. Mice were imaged after injection of probes for 30 min. PerkinElmer IVIS® Lumina XR Series III System was used for the bio-imaging of animal models. The excitation and emission wavelength were chosen as described in the manuscript.

Figure S1. (A) General synthetic routes for the probe CDMS. (1). Condensed H_2SO_4 , 95 °C, 3 h. (2). Ethanol, 80 °C, 8 h. (B) Proposed responding mechanism toward ONOO⁻.

Figure S2. (A) UV-vis absorption spectra and (B) fluorescence spectra of **CDMS** (10 μ M), **CDMS** (10 μ M) + (100 μ M) ONOO⁻ and **CDMSO** (10 μ M) in PBS solution (pH=7.4, 20 mM, with 0.1% DMSO).

Figure S3. Fluorescence quantum yields of (A) CDMS (10 μ M) and (B) CDMSO

(10 μ M) in buffer solution.

Figure S4. Fluorescence life time spectra of (a) CDMS (10 μ M), (b) CDMS (10 μ M)

+ ONOO⁻ (100 μ M) and (c) CDMSO.

$\mathbf{A} \qquad R(t) = B_1$	$e^{(-t/\tau_1)} + B_2$	B $R(t) = B_1 e^{(-t/\tau_1)} + B_2 e^{(-t/\tau_2)} + B_3 e^{(-t/\tau_2)} + B_4 e^{(-t/\tau_4)}$						C $R(t) = B_1 e^{(-t/\tau_1)} + B_2 e^{(-t/\tau_2)} + B_3 e^{(-t/\tau_3)} + B_4 e^{(-t/\tau_4)}$								
Fix Value / ns T1 0.3572 T2 3.6148 T3	Std. Dev / ns 0.0136 0.0437	Fix Value B1 389.4944 B2 155.1823 B3	Std. Dev 11.1622 2.7308	Rel % 19.87 80.13	Fix Value / ns T_1 0.9970 T_2 3.9992 T_3	Std. Dev / ns 0.0128 0.0271	Fi B1 B2 B3 B4	x Value 2229.3950 979.0826	Std. Dev 17.4364 14.3214	Rel % 36.21 63.79	Fix Value / ns τ_1 0.3217 τ_2 4.0959 τ_3	Std. Dev / ns 0.0049 0.0389	Бр В1 В2 В3 В4	Value 1345.3693 183.1863	Std. Dev 18.3660 2.5073	Rel % 36.59 63.41
$\begin{array}{c} \langle \tau \rangle_{amp} & \hline 1.2853 & 0.0273 \\ \langle \tau \rangle_{at} & \hline 2.9674 & 0.0479 \end{array} \qquad \textbf{CDMS}$					$\langle \tau \rangle_{amp}$ [1.9132 [0.0161] CDMS + ONOO ⁻ $\langle \tau \rangle_{int}$ [2.9120 [0.0252]						$ \begin{array}{c c} \langle \tau \rangle_{amp} & \hline 0.7741 & \hline 0.0100 & \\ \langle \tau \rangle_{att} & \hline 2.7151 & \hline 0.0388 & \\ \end{array} $					

Figure S5. The fluorescence lifetimes of (A) CDMS, (B) CDMS + ONOO⁻ and (C)

CDMSO.

various substrates (50 equivalents).

Figure S7. Investigation on the stability of CDMS (10 μ M) for detecting ONOO⁻ at different pH.

Figure S8. The ratio values of **CDMS** and **CDMSO** (10 μ M) in different solvents: 1. Blank; 2. Ethanol; 3. Ethylene Glycol; 4. Methanol; 5. Dichloromethane; 6. Isobutanol; 7. Water; 8. Dimethyl Sulfoxide; 9. N,N-Dimethyl formamide; 10. Acetonitrile; 11. Chloroform; 12. Acetone; 13. Toluene; 14. Ethylacetate; 15. Dioxane; 16. Diethyl Ether; 17. Ethylether; 18. Acetic acid.

HPLC assay

To further verify the response mechanism of **CDMS** towards ONOO⁻. High Performance Liquid Chromatography (HPLC) experiments were performed. Eluent A was H₂O solution containing 5% methanol, and eluent B was pure methanol. The linear gradient condition was as follows: 0 min = 20% B, 10 min = 100% B, 15 min = 100% B using Hypersil BDS C18, 5 μ m, 4.6×250 mm column in Agilent 1260 infinity II. The flow rate was set at 0.1 mL · min⁻¹ and the monitor wavelength was constant at

254 nm. As shown in Figure S8, These results verify the response mechanism during detection process of **CDMS** towards ONOO⁻.

Figure S9. HPLC analysis of CDMS and CDMSO + ONOO⁻ (100 μ M). Data were recorded ten min after the addition of ONOO⁻.

The cytotoxicity of probe **CDMS** against RAW 264.7 cells was assessed by the CCK-8 assay. The cells were seeded into a 96-well cell culture plate at a final density of 5×10^3 cells/well. After the cells were incubated for 24 h at 37 °C under 5% CO₂, different concentrations of **CDMS** (0 – 100 µM) were added to the wells. Subsequently, the cells were incubated for 24 h at 37 °C under 5% CO₂. Then, 10 µL CCK-8 solution was added to each well of the plate and incubated for 4 h at 37 °C under 5% CO₂. The optical density (OD) was measured at 450 nm using a microplate reader (Tecan, Austria). When the concentration of **CDMS** was 0 µM, the cell viability value was set to 100 %. Accordingly, the IC₅₀ value of RAW264.7 cells was calculated to be 376.58 µM. As shown in Figure S9, the cells viability indicated that our probe displayed low cytotoxicity in living cells.

Figure S10. The cell viability of RAW264.7 cells with CDMS.

Figure S11. H&E staining of main organs from control mouse (above) and treated mouse after 24 hours' administration. CDMS (1 mM in saline, 20 μ L) was intravenously injected in the tail. Scale bar: 200 μ m.

Figure S12. ESI-MS of CDM

Figure S20. ¹³C NMR of CDMSO in d⁶-DMSO

References

- (1) Xiao, N.; Ren, X.; McCulloch, W. D.; Gourdin, G.; Wu, Y. Acc. Chem. Res., 2018, 51, 2335-2343.
- (2) Liu, B.; Cheng, J.; Li, Y.; Li, J.-H. Chem. Comm., 2019, 55, 667-670.
- (3) Peng, T.; Wong, N.-K.; Chen, X.; Chan, Y.-K.; Ho, D. H.-H.; Sun, Z.; Hu, J. J.; Shen, J.; El-

Nezami, H.; Yang, D. J. Am. Chem. Soc., 2014, 136, 11728-11734.

(4) Cheng, D.; Xu, W.; Yuan, L.; Zhang, X. Anal. Chem., 2017, 89, 7693-7700.