
1

A study of the application of graphite MALDI to the

analysis of lanthanide salts and deconvolution of the

isobaric species observed.

Ulric Conway1#, Alexander D. Warren1,2 and Paul J. Gates1*

Affiliations:

1. School of Chemistry, University of Bristol, Cantock’s Close, Bristol, BS8 1TS, U.K.

2. Interface Analysis Centre, School of Physics, University of Bristol, Tyndall Avenue,

Bristol, BS8 1TL, U.K.

current address: Kratos Analytical, Trafford Park, Manchester, M17 1GP, U.K.

Supplementary Information:

Table S1. The sources and descriptions of the lanthanides analysed in this study....................2

Table S2. Experimental parameters and settings used for the 4700 ..3

Figure S1. Positive ion MALDI-MS analysis of the lanthanide period4

Deconvolution theory ...9

Deconvolution application for Sm (see figure 2) ...11

Table S3. The known components of the matrix equation to be solved..................................11

Python code for deconvolution ..12

Figure S2. Plots of the observed peaks against deconvoluted simulations for the..................17

lanthanides samarium, neodymium, and europium.

Electronic Supplementary Material (ESI) for Analyst.
This journal is © The Royal Society of Chemistry 2021

2

Table S1. The sources and descriptions of the lanthanides analysed in this study. Sources were

SPEX CertiPrep (New Jersey, USA), Sigma Aldrich (Gillingham, UK), Fluka Analytical

(Gillingham, UK) and Fisher Scientific (Loughborough, UK).

Element Description Oxn Code Description Supplier

Lanthanum

(La)

1,000 mg/L in 2%

HNO3

III PLLA2-2Y Assurance

Grade

SPEX

CertiPrep

Cerium

(Ce)

1,000 mg/L in 2%

HNO3

III PLCE2-2Y Assurance

Grade

SPEX

CertiPrep

Praseodymium

(Pr)

1,000 mg/L in 2%

HNO3

III PLPR2-2Y Assurance

Grade

SPEX

CertiPrep

Neodymium

(Nd)

1,000 mg/L in 2%

HNO3

III PLND2-2Y Assurance

Grade

SPEX

CertiPrep

Samarium

(Sm)

1,000 mg/L in 2%

HNO3

III PLSM2-2Y Assurance

Grade

SPEX

CertiPrep

Europium

(Eu)

1,000 mg/L in 2%

HNO3

III PLEU2-2Y Assurance

Grade

SPEX

CertiPrep

Gadolinium

(Gd)

1,000 mg/L in 2%

HNO3

III PLGD2-2Y Assurance

Grade

SPEX

CertiPrep

Terbium

(Tb)

1,000 mg/L in 2%

HNO3

III PLTB2-2Y Assurance

Grade

SPEX

CertiPrep

Dysprosium

(Dy)

1,000 mg/L in 2%

HNO3

III 68839 ICP Standard Fluka

Analytical

Holmium

(Ho)

1,000 mg/L in 2%

HNO3

III SJ/56025/100 ICP Standard Fisher

Chemicals

Erbium

(Er)

1,000 mg/L in 2%

HNO3

III 05693 ICP Standard Fluka

Analytical

Thulium

(Tm)

1,000 mg/L in 2%

HNO3

III PLTM2-2Y Assurance

Grade

SPEX

CertiPrep

Ytterbium

(Yb)

1,000 mg/L in 2%

HNO3

III 39956 ICP Standard Sigma

Aldrich

Lutetium

(Lu)

1,000 mg/L in 2%

HNO3

III PLLU2-2Y Assurance

Grade

SPEX

CertiPrep

3

Table S2. Experimental parameters and settings used for the 4700 Proteomics Analyzer.

Parameter Setting

Detection mode Reflectron

Ion mode Positive

m/z range 50-600

Laser fluence 50-60%

Spectra summed 1000 shots per 20 sub-spectra

Spots per sample 10

Repeats per spot 3

4

Figure S1: Replotted positive ion mode MALDI-MS analysis of the lanthanide period. The
spectra are expanded to only show the regions of interest (M+, MO+, MOH+, MC2

+ etc)

(a) Lanthanum (La) (Mw M+ = 138.9, MO+ = 154.9, MC2
+ = 162.9)

(b) Cerium (Ce) (Mw M+ = 139.9, MO+ = 155.9, MC2
+ = 163.9)

(c) Praseodymium (Pr) (Mw M+ = 140.9, MO+ = 156.9, MC2
+ = 164.9)

5

(d) Neodymium (Nd) (Mw M+ = 141.9, MO+ = 157.9, MC2
+ = 165.9)

(e) Samarium (Sm) (Mw M+ = 151.9, MO+ = 167.9, MOH+ = 168.9, MC2H2
+ = 177.9)

(f) Europium (Eu) (Mw M+ = 152.9, MO+ = 168.9, MOH+ = 169.9, MC2
+ = 176.9, MC2H2

+ =
178.9)

6

(g) Gadolinium (Gd) (Mw M+ = 158.0, MO+ = 173.9, MC2
+ = 181.9)

(h) Terbium (Tb) (Mw M+ = 158.9, MO+ = 174.9, MC2
+ = 182.9)

(i) Dysprosium (Dy) (Mw M+ = 163.9, MO+ = 179.9, MC2
+ = 187.9)

7

(j) Holmium (Ho) (Mw M+ = 164.9, MO+ = 180.9, MC2
+ = 188.9)

(k) Erbium (Er) (Mw M+ = 165.9, MO+ = 181.9, MC2
+ = 189.9)

(l) Thulium (Tm) (Mw M+ = 169.0, MO+ = 185.0, MOH+ = 186.0, MC2
+ = 193.0)

8

(m) Ytterbium (Yb) (Mw M+ = 174.0, MO+ = 190.0)

(n) Lutetium (Lu) (Mw M+ = 175.0, MO+ = 190.0, MC2
+ = 198.9)

9

Deconvolution theory:

Observed mass spectra isotopic patterns can be represented as a column vector b, where the

row represents the m/z and the value represents the intensity. If the value of the abundance bj

at each mass j consists of a number of contributions from different species, then it can be written

as a system of linear equations:

𝑎11𝑥1 + 𝑎12𝑥2 + … + 𝑎1𝑛𝑥𝑛 = 𝑏1

𝑎21𝑥1 + 𝑎22𝑥2 + … + 𝑎2𝑛𝑥𝑛 = 𝑏2

⁞ (S1)
𝑎𝑚1𝑥1 + 𝑎𝑚2𝑥2 + … + 𝑎𝑚𝑛𝑥𝑛 = 𝑏𝑚

where x represents the contribution of isobaric component a to the observed intensity b. This

system can be written as a matrix equation with the m × n matrix A which contains the

theoretical isotope patterns of the n different components:

 (S2)𝐴𝑥 = 𝑏

where:

A =
[𝑎11 𝑎12

𝑎21 𝑎22

⋯
…

𝑎1𝑛
𝑎2𝑛

⋮ ⋮ ⋱ ⋮
𝑎𝑚1 𝑎𝑚2 ⋯ 𝑎𝑚𝑛

], 𝑥 = [𝑥1
𝑥2
⋮

𝑥𝑛
], 𝑏 = [𝑏1

𝑏2
⋮

𝑏𝑚
]

Solution of the matrix equation will yield the column vector x, whose components xi can be

used to find the percentage contribution of each component (Xi) in the observed spectrum:

(S3)

 𝑋𝑖 =
𝑥𝑖

∑
𝑖

𝑥𝑖
 𝑥 100

Generally speaking, equation S2 will lack a unique solution and so it becomes a least squares

problem. This is equivalent to saying that there will be some deviation ε between the calculated

abundances and what is actually observed:

(S4) 𝐴𝑥 + 𝜀 = 𝑏

So, although we might not be able to directly solve Ax = b, we can try to minimise the residual

ε = (b − Ax). The sum of the squares of the residuals can be written as (using T to denote the

transpose of a matrix):

10

(S5)∑𝜀2 = 𝜀𝑇𝜀 = (𝑏 ‒ 𝐴𝑥)𝑇(𝑏 ‒ 𝐴𝑥)

 = bTb - 2xTAT + xTATAb (S6)

To minimise the sum of squares we set the derivatives with respect to x equal to zero, and then

rearrange the equation to obtain the x which we seek:

 - 2ATb + 2ATAx = 0 (S7)
∂

∂𝑥∑𝜀2 =

 ATAx = ATb (S8)
 x = (ATA)-1 ATb (S9)

For an inverse of ATA to exist we require that m ≥ n, or in other words, the number of possible

components in the spectral pattern is smaller than or equal to the number of observations

(peaks). The standard expression for the error in the elements of x is:

(S10)
𝑠 2

𝑥𝑖
 = 𝑠2

𝑟 . (𝐴𝑇𝐴) ‒ 1

where sr is standard deviation of the residuals. Taking into account the propagation of errors

through equations S3 and S8 results in the following equation for the standard deviation of Xi,

as used by Meija and Caruso [xx]:

 = (S11)

𝑠𝑋𝑖

𝑋𝑖

1
(𝑚 ‒ 1)

(𝑏 ‒ 𝐴𝑥)𝑇(𝑏 ‒ 𝐴𝑥) . (1
𝑥𝑖

(𝐴𝑇𝐴) ‒ 1
𝑖𝑖)2 +

𝑛

∑
𝑘 = 1

(1
𝑥𝑘

(𝐴𝑇𝐴) ‒ 1
𝑘𝑘)2

Overlapping species can therefore be separated from each other in a quantitative manner by

translating equation S9 into computer code (see Python code below).

For example, when analysing samarium-containing analytes one frequently observes both

SmO+ and SmOH+ which are one m/z unit apart and interfere with each other due to the

complex isotopic pattern of samarium. The relative amounts of each species can be determined

because the theoretical patterns of each of the contributors can be calculated before-hand,

forming the matrix A in equation S9. Clearly this highlights an important limitation in this

technique: that the individual ionic components of the observed pattern must be known a priori.

Alternatively, the experimenter can attempt to obtain the isobaric components by educated

11

guesswork. In any case, the resulting statistical error (from equation S11) will provide

information about how closely the experimentally observed data matches the theoretically

inputted data. When combined with visual inspection of the spectra, deconvolution of isobaric

components in this way is still a powerful technique.

Deconvolution application - for Sm (see figure 2):

Raw data from the MALDI analysis was imported into Origin where the peaks of interest were

integrated to form the vector b, from equation S2 above. Formation of the A matrix in this case

is shown in table S3.

Table S3. Matrices showing the known components of the matrix equation to be solved.

Matrix A contains the theoretical abundances (shown to 4 s.f.) of the components, where the

three columns correspond to SmO+, SmOH+ and SmC2H2
+ respectively. Matrix b contains the

peak heights of each spectral feature (shown rounded to nearest whole number).

12

From here, the least squares optimised x could be calculated using equations S3-S11. This was

achieved by manipulating the matrices in the code building environment of Origin, called

“Origin C”. Functions were programmed so that the algorithms could work directly on the peak

data already stored in Origin.

Python Code for Deconvolution

The computational method used to solve the matrix equation Ax = b for x; in other words, solve

the following equation:

x = (ATA)−1 AT b. (S12)

This method uses the “Origin C” programming language, which is based on C/C++ and which

can be used to manipulate data imported into Origin software, including matrices. The program

used to solve the equation was developed inhouse by the authors and is presented here followed

by some notes.

1 #include <Origin.h>

2

3 void deconvolve()

4 {

5 int m, n, o, p;

6 double sum = 0.0, kSUM = 0.0, m_doub = 0.0;

7

8 vector sumvec;

9 Matrix matF, matY;

10 matrix matFt, matFtF, matFtF_inv, matA, summat, matFA;

11 matrix matRES, matRESt, matStderr, matRESq, matDISP;

12

13 /* Get the theoretical patterns */

14 matF.Attach("F");

15

16 /* Get the experimental data */

13

17 matY.Attach("Y");

18

19 /* Get matrix dimensions */

20 m = matF.GetNumRows();

21 n = matF.GetNumCols();

22 o = matY.GetNumRows();

23 p = matY.GetNumCols();

24 //printf(" Matrix F is %d rows by %d columns\n", m , n);

25 //printf(" Matrix Y is %d rows by %d columns\n", o , p);

26

27 /* Check dimensions */

28 if(((m<n)) || (!(m==o)))

29 {

30 printf("Check matrix dimensions!\n");

31 }

32

33 /* Take transpose of F */

34 matFt = matF;

35 matFt.Transpose();

36

37 /* Multiply F with its transpose (to obtain information matrix) */

38 matFtF = matFt*matF;

39

40 /* Take the inverse (to obtain inverse information matrix) */

41 matFtF_inv = matFtF;

42 matFtF_inv.Inverse();

43

44 /* Solution of least squares gives ... */

45 matA = matFtF_inv*matFt*matY;

14

46

47 /* Calculate percentages of each component */

48 matA.SumColumns(sumvec);

49 sum = sumvec[0];

50 summat = (matA/sum)*100;

51

52 /* Find the residuals and the sum of their squares */

53 matFA = matF*matA;

54 matRES = matY - matFA;

55 matRESt = matRES;

56 matRESt.Transpose();

57 matRESq = matRESt*matRES;

58 matStderr = matA;

59

60 /* Change m to double type for error calc */

61 m--;

62 m_doub = (double) m;

63

64 /* Calculate residual standard deviation */

65 for(int l=0; l<n; l++)

66 kSUM += pow((1/matA[l][0])*matFtF_inv[l][l],2);

67 for(int k=0; k<n; k++)

68 matStderr [k][0] = sqrt (matRESq[0][0]/m_doub)*sqrt(pow

((1/matA[k][0])*matFtF_inv[k][k],2) + kSUM);

69

70 /* Output results to script window */

71 printf("Percentage of each component:\n");

72 for(int i=0; i<n; i++)

73 printf("%d - %f (+/-%d)%%\n", (i+1), summat[i][0], (int)

ceil(matStderr[i][0]*summat[i][0]));

15

74

75 /* Choose to display matrices */

76 //MatrixPage MatPg1;

77 //MatPg1.Create("Origin");

78 //MatrixLayer MatLy1 = MatPg1 . Layers (0);

79 //Matrix DISP (MatLy1);

80 //DISP = matStderr;

81 //

82 //printf("%f\n", m_doub);

83

84 //MatrixPage MatPg2;

85 //MatPg2.Create("Origin");

86 //MatrixLayer MatLy2 = MatPg2.Layers(0);

87 //Matrix matFtF(MatLy2);

88

89 //MatrixPage MatPg3;

90 //MatPg3.Create("Origin");

91 //MatrixLayer MatLy3 = MatPg3.Layers(0);

92 //Matrix matFtF_inv(MatLy3);

93

94 //MatrixPage MatPg4;

95 //MatPg4.Create("Origin");

96 //MatrixLayer MatLy4 = MatPg4.Layers(0);

97 //Matrix matA(MatLy4);

98

99 //MatrixPage MatPg5;

100 //MatPg5.Create("Origin");

101 //MatrixLayer MatLy5 = MatPg5.Layers(0);

102 //Matrix matDISP(MatLy5);

16

103

104 }

17

After all the variables in the program have been declared, lines 13-17 define the two input

matrices: matF containing the theoretical abundances calculated from mMass software [S1]

and matY containing the experimental abundances. The program then proceeds by gaining the

dimensions of the matrices and some simple error checking in lines 19-31. After this a number

of intermediate matrices are set up to make the calculation easier to check throughout each

stage, followed by the calculation on line 45 which essentially mirrors equation S12. Lines 52-

68 contain the calculation of the error in finding the least squares, which is followed by the

output of the results to a window in Origin. The remainder of the program contains options to

display many of the different matrices in a separate window throughout the calculation, for

checking by eye.

18

Figure S2: Plots of the observed peaks (black) against deconvoluted simulations (red)

for the lanthanides (a) samarium, (b) neodymium and (c) europium.

(a)

(b)

(c)

[S1] M. Strohalm, D. Kavan, P. Novak, M. Volny, V. Havlicek, mMass 3: A Cross-Platform

Software Environment for Precise Analysis of Mass Spectrometric Data, Anal. Chem. 2010,

82, 4648-4651.

