Electronic Supplementary Material (ESI) for Analyst.
This journal is © The Royal Society of Chemistry 2021

A study of the application of graphite MALDI to the
analysis of lanthanide salts and deconvolution of the

isobaric species observed.

Ulric Conway'#, Alexander D. Warren!? and Paul J. Gates'*

Affiliations:
1. School of Chemistry, University of Bristol, Cantock’s Close, Bristol, BS8 1TS, U.K.

2. Interface Analysis Centre, School of Physics, University of Bristol, Tyndall Avenue,
Bristol, BS8 1TL, U.K.

# current address: Kratos Analytical, Trafford Park, Manchester, M17 1GP, U.K.

Supplementary Information:

Table S1. The sources and descriptions of the lanthanides analysed in this study....................
Table S2. Experimental parameters and settings used for the 4700 ...........ccccveevvieeeiieenieeennee.
Figure S1. Positive ion MALDI-MS analysis of the lanthanide period ............cccccceviiininnin.

Deconvolution theory .............ccoooiiiiiiiii e

Deconvolution application for Sm (see figure 2) ...........cccoeiiviiiiieiiiieeee e 11
Table S3. The known components of the matrix equation to be solved..........ccccevveniriennene 11
Python code for deconvolution...................oooiiiiiiiiiiiii e 12
Figure S2. Plots of the observed peaks against deconvoluted simulations for the.................. 17

lanthanides samarium, neodymium, and europium.



Table S1. The sources and descriptions of the lanthanides analysed in this study. Sources were
SPEX CertiPrep (New Jersey, USA), Sigma Aldrich (Gillingham, UK), Fluka Analytical
(Gillingham, UK) and Fisher Scientific (Loughborough, UK).

Element Description Ox2 | Code Description | Supplier
Lanthanum 1,000 mg/L in 2% III PLLA2-2Y Assurance SPEX
(La) HNO; Grade CertiPrep
Cerium 1,000 mg/L in 2% III PLCE2-2Y Assurance SPEX
(Ce) HNO; Grade CertiPrep
Praseodymium | 1,000 mg/L in 2% I PLPR2-2Y Assurance SPEX
(Pr) HNO; Grade CertiPrep
Neodymium 1,000 mg/L in 2% I PLND2-2Y | Assurance SPEX
(Nd) HNO; Grade CertiPrep
Samarium 1,000 mg/L in 2% I PLSM2-2Y Assurance SPEX
(Sm) HNO; Grade CertiPrep
Europium 1,000 mg/L in 2% III PLEU2-2Y Assurance SPEX
(Eu) HNO; Grade CertiPrep
Gadolinium 1,000 mg/L in 2% III PLGD2-2Y Assurance SPEX
(Gd) HNO; Grade CertiPrep
Terbium 1,000 mg/L in 2% I PLTB2-2Y Assurance SPEX
(Tb) HNO; Grade CertiPrep
Dysprosium 1,000 mg/L in 2% I 68839 ICP Standard | Fluka
(Dy) HNO; Analytical
Holmium 1,000 mg/L in 2% I SJ/56025/100 | ICP Standard Fisher
(Ho) HNO; Chemicals
Erbium 1,000 mg/L in 2% I 05693 ICP Standard | Fluka

(Er) HNO; Analytical
Thulium 1,000 mg/L in 2% I PLTM2-2Y | Assurance SPEX
(Tm) HNO; Grade CertiPrep
Ytterbium 1,000 mg/L in 2% I 39956 ICP Standard Sigma
(Yb) HNO; Aldrich
Lutetium 1,000 mg/L in 2% I PLLU2-2Y Assurance SPEX
(Lu) HNO; Grade CertiPrep




Table S2. Experimental parameters and settings used for the 4700 Proteomics Analyzer.

Parameter Setting
Detection mode Reflectron
Ion mode Positive
m/z range 50-600
Laser fluence 50-60%
Spectra summed 1000 shots per 20 sub-spectra
Spots per sample 10
Repeats per spot 3




Figure S1: Replotted positive ion mode MALDI-MS analysis of the lanthanide period. The
spectra are expanded to only show the regions of interest (M, MO*, MOH*, MC," etc)

(a) Lanthanum (La) (Mw M* = 138.9, MO" = 154.9, MC," = 162.9)
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(b) Cerium (Ce) (Mw M* = 139.9, MO* = 155.9, MC,* = 163.9)
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(c) Praseodymium (Pr) (Mw M* = 140.9, MO*" = 156.9, MC," = 164.9)
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(d) Neodymium (Nd) (Mw M* = 141.9, MO* = 157.9, MC," = 165.9)
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(e) Samarium (Sm) (Mw M* = 151.9, MO* = 167.9, MOH" = 168.9, MC,H," = 177.9)

z 1519 Sme
2500 4
2000
1500
1000
500 4

168.9
| [l o
0 dony by o ‘Jllll IJ‘.I![J.J.1+
140 145 150 185 160 165 170 175 180 185 190
miz

(f) Europium (Eu) (Mw M* = 152.9, MO* = 168.9, MOH"* = 169.9, MC,* = 176.9, MC,H,"

178.9)
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(g) Gadolinium (Gd) (Mw M* = 158.0, MO" = 173.9, MC,"=181.9)
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(h) Terbium (Tb) (Mw M* = 158.9, MO* = 174.9, MC,* = 182.9)
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(i) Dysprosium (Dy) (Mw M* = 163.9, MO* = 179.9, MC,* = 187.9)
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(j) Holmium (Ho) (Mw M* =164.9, MO" = 180.9, MC,* = 188.9)
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(k) Erbium (Er) (Mw M* = 165.9, MO* = 181.9, MC,* = 189.9)
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(1) Thulium (Tm) (Mw M* = 169.0, MO* = 185.0, MOH* = 186.0, MC," = 193.0)
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(m) Ytterbium (Yb) (Mw M* =174.0, MO" = 190.0)
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(n) Lutetium (Lu) (Mw M* = 175.0, MO" = 190.0, MC,"= 198.9)
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Deconvolution theory:
Observed mass spectra isotopic patterns can be represented as a column vector b, where the
row represents the m/z and the value represents the intensity. If the value of the abundance bj
at each mass j consists of a number of contributions from different species, then it can be written
as a system of linear equations:

a; X+ a;x, + .o+ agx, = by

a,;x; + ay,x, + .. + a,,x, = b,

(S1)
a,X;+ a,.,x, + .. + a, . x, = bm

where x represents the contribution of isobaric component a to the observed intensity b. This
system can be written as a matrix equation with the m x n matrix A which contains the

theoretical isotope patterns of the n different components:

Ax = b (S2)
where:
ajp Aqp A1n Xq by
AN R LT L
A= A1 Dm2 A, Xn b,

Solution of the matrix equation will yield the column vector x, whose components x; can be

used to find the percentage contribution of each component (X)) in the observed spectrum:

X
X =

L

x 100

X

i (S3)

Generally speaking, equation S2 will lack a unique solution and so it becomes a least squares
problem. This is equivalent to saying that there will be some deviation & between the calculated

abundances and what is actually observed:
Ax + e=b (S4)
So, although we might not be able to directly solve Ax =b, we can try to minimise the residual

¢ = (b — Ax). The sum of the squares of the residuals can be written as (using 7 to denote the

transpose of a matrix):



Zsz = e = (b - A0 (b - Ax) )
= bTb - 2xTAT + xTATAb (S6)

To minimise the sum of squares we set the derivatives with respect to x equal to zero, and then

rearrange the equation to obtain the x which we seek:

d
dxd”  _2ATh+2ATAx =0 (S7)
ATAx= ATb (S8)
x = (ATA)! ATh (S9)

For an inverse of ATA to exist we require that m > n, or in other words, the number of possible
components in the spectral pattern is smaller than or equal to the number of observations
(peaks). The standard expression for the error in the elements of x is:
2 2 T -1
s, =s..(A'A
where s, is standard deviation of the residuals. Taking into account the propagation of errors
through equations S3 and S8 results in the following equation for the standard deviation of X,

as used by Meija and Caruso [xx]:

°X; 1 T 1. 7.n-1)2 1. 7.n-1)2

A (b= 40" (0 - Ax) . || —(4"A) [ + D@y

Xi _ (m_ ) xi k=1 xk (Sll)
Overlapping species can therefore be separated from each other in a quantitative manner by

translating equation S9 into computer code (see Python code below).

For example, when analysing samarium-containing analytes one frequently observes both
SmO™ and SmOH™ which are one m/z unit apart and interfere with each other due to the
complex isotopic pattern of samarium. The relative amounts of each species can be determined
because the theoretical patterns of each of the contributors can be calculated before-hand,
forming the matrix A in equation S9. Clearly this highlights an important limitation in this
technique: that the individual ionic components of the observed pattern must be known a priori.

Alternatively, the experimenter can attempt to obtain the isobaric components by educated
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guesswork. In any case, the resulting statistical error (from equation S11) will provide
information about how closely the experimentally observed data matches the theoretically
inputted data. When combined with visual inspection of the spectra, deconvolution of isobaric

components in this way is still a powerful technique.

Deconvolution application - for Sm (see figure 2):

Raw data from the MALDI analysis was imported into Origin where the peaks of interest were
integrated to form the vector b, from equation S2 above. Formation of the A matrix in this case

1s shown in table S3.

Table S3. Matrices showing the known components of the matrix equation to be solved.
Matrix A contains the theoretical abundances (shown to 4 s.f.) of the components, where the
three columns correspond to SmO*, SmMOH™ and SmC,H," respectively. Matrix b contains the

peak heights of each spectral feature (shown rounded to nearest whole number).

m/z= 160 [ 300 = = 701
161 ~ BEF - 514
162 = = = 0
163 BT - = 3254
164 11.23 1497 - 4560
165 13.86 1123 — 4536
166 741 1386 — 3466
167 003 741 — 1146
168 26.73 0.03 — 5555
169 . BHN§ - 3721
170 A = [2281 - 307| b = |4733
171 — 2281 007’ 3614
172 005 - - 630
173 —  0.05 14.98 1163
174 o= NG 872
175 s = 1408 520
176 - - 769 1224
177 —~ = Bl 368
178 —~ = BT 1825
179 s we ES 308
180 e 014
181 - - 050 | 339 |

11
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From here, the least squares optimised x could be calculated using equations S3-S11. This was
achieved by manipulating the matrices in the code building environment of Origin, called
“Origin C”. Functions were programmed so that the algorithms could work directly on the peak

data already stored in Origin.
Python Code for Deconvolution

The computational method used to solve the matrix equation Ax =b for x; in other words, solve

the following equation:

x = (ATA)' ATb. (S12)

This method uses the “Origin C” programming language, which is based on C/C++ and which
can be used to manipulate data imported into Origin software, including matrices. The program
used to solve the equation was developed inhouse by the authors and is presented here followed

by some notes.

#include <Origin.h>

void deconvolve ()
{
int m, n, o, p;

double sum = 0.0, kSUM = 0.0, m doub = 0.0;

vector sumvec;
Matrix matF, matyY;
matrix matFt, matFtF, matFtF inv, matA, summat, matFA;

matrix matRES, matRESt, matStderr, matRESq, matDISP;

/* Get the theoretical patterns */

matF.Attach ( ) ;

/* Get the experimental data */

12
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matY.Attach ( ) ;

/* Get matrix dimensions */

m = matF.GetNumRows () ;
n = matF.GetNumCols () ;
o = matY.GetNumRows () ;
p = matY.GetNumCols () ;

//printf (" Matrix F is %d rows by %d columns\n", m , n);

//printf (" Matrix Y is %d rows by %d columns\n", o , p);

/* Check dimensions */
1f(((m<n)) || (! (m==0)) )
{

printf ( )

/* Take transpose of F */
matFt = matk;

matFt.Transpose() ;

/* Multiply F with its transpose (to obtain information matrix) */

matFtF = matFt*matF;

/* Take the inverse (to obtaln inverse information matrix) */
matFtF inv = matFtF;

matFtF inv.Inverse();

/* Solution of least squares gives ... */

matA = matFtF inv*matFt*maty;
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/* Calculate percentages of each component */

matA.SumColumns (sumvec) ;
sum = sumvec[0];

summat = (matA/sum)*100;

/* Find the residuals and the sum of their squares */

matFA = matF*matA;

matRES = matY - matFA;
matRESt = matRES;
matRESt.Transpose () ;
matRESg = matRESt*matRES;

matStderr = mathh;

/* Change m to double type for error calc */

m--;

m doub = (double) m;

/* Calculate residual standard deviation */

for (int 1=0; 1<n; 1++)

kSUM += pow( (1/matA[1][0])*matFtF inv[1][1],2);

for(int k=0; k<n; k++)

matStderr [k][0] = sqrt (matRESqg[0][0]/m doub) *sqrt( pow

((1/matA[k] [0]) *matFtF inv (k] [k],2)

/* Output results to script window */
printf (
for (int i=0; i<n; 1++)

printf ( , (1+1),

ceil (matStderr[i] [0] *summat [1i][0]))

+ kSUM) ;

summat [1] [0],

(int)



74

75 /* Choose to display matrices */

76 //MatrixPage MatPqgl;

77 //MatPgl.Create ("Origin") ;

78 //MatrixLayer MatLyl = MatPgl . Layers (0);
79 //Matrix DISP (MatLyl) ;

80 //DISP = matStderr;

81 //

82 //printf ("$f\n", m doub) ;

83

84 //MatrixPage MatPg2;

85 //MatPg2.Create ("Origin");

86 //MatrixLayer MatLy2 = MatPgZ2.Layers(0) ;
87 //Matrix matFtF (MatLyZ2) ;

88

89 //MatrixPage MatPg3;

90 //MatPg3.Create ("Origin") ;

91 //MatrixLayer MatLy3 = MatPg3.Layers (0);
92 //Matrix matFtF inv(MatLy3) ;

93

94 //MatrixPage MatPg4;

95 //MatPg4.Create ("Origin") ;

96 //MatrixLayer MatLy4 = MatPg4.Layers (0);
97 //Matrix matA (MatLy4) ;

98

99 //MatrixPage MatPgb5;

100 //MatPg5.Create ("Origin") ;

101 //MatrixLayer MatLy5 = MatPg5.Layers (0) ;

102 //Matrix matDISP (MatLyb5) ;

15



103

104 }
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After all the variables in the program have been declared, lines 13-17 define the two input
matrices: matF containing the theoretical abundances calculated from mMass software [S1]
and matY containing the experimental abundances. The program then proceeds by gaining the
dimensions of the matrices and some simple error checking in lines 19-31. After this a number
of intermediate matrices are set up to make the calculation easier to check throughout each
stage, followed by the calculation on line 45 which essentially mirrors equation S12. Lines 52-
68 contain the calculation of the error in finding the least squares, which is followed by the
output of the results to a window in Origin. The remainder of the program contains options to
display many of the different matrices in a separate window throughout the calculation, for

checking by eye.

17



Figure S2: Plots of the observed peaks (black) against deconvoluted simulations (red)

for the lanthanides (a) samarium, (b) neodymium and (c) europium.
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[S1] M. Strohalm, D. Kavan, P. Novak, M. Volny, V. Havlicek, mMass 3: A Cross-Platform

Software Environment for Precise Analysis of Mass Spectrometric Data, Anal. Chem. 2010,

82, 4648-4651.
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