## **Electronic Supplementary Information**

## Highly specific detection of KRAS single nucleotide polymorphism by asymmetric PCR/SERS assay

## Nana Lyu<sup>a</sup>, Vinoth Kumar Rajendran<sup>a</sup>, Jun Li<sup>b</sup>, Alexander Engel<sup>c,d</sup>, Mark P. Molloy<sup>SD</sup> and Yuling Wang<sup>SD</sup> a

a. ARC Centre of Excellence for Nanoscale BioPhotonics and Department of Molecular Sciences, Macquarie University, Sydney, NSW 2109, Australia. Email: <u>yuling.wang@mq.edu.au</u>

b. Bowel Cancer and Biomarker Laboratory, Kolling Institute, The University of Sydney, NSW 2006, Australia. Email: <u>m.molloy@sydney.edu.au</u>

c. Department of Colorectal Surgery, Royal North Shore Hospital, Sydney, NSW 2065, Australia.

d. Sydney Medical School, The University of Sydney, NSW 2006, Australia

| Oligonucleotides                          | 5'-Sequence-3'                                   |
|-------------------------------------------|--------------------------------------------------|
| KRAS F-Primer (10 µM)                     | /5Biosg/TGACTGAATATAAACTTGTGGTAGTTG (Tm: 66.3°C) |
| KRAS R-Primer (2.5 µM)                    | GATCATATTCGTCCACAAAATGATTCTGA (Tm: 66.4°C)       |
| KRAS G12V probe                           | /5ThioMC6-D/TTTTTCCTACGCCAACAG                   |
| KRAS amplicon<br>(length: 99 nucleotides) | TGACTGAATATAAACTTGTGGTAGTTGGAGCTGTTGGCGTAGG      |
|                                           | CAAGAGTGCCTTGACGATACAGCTAATTCAGAATCATTTTGTG      |
|                                           | GACGAATATGATC                                    |

Table S1. Sequences of oligonucleotides and PCR amplicon used in this study

Modifications are as indicated. 5Biosg: 5'-biotin modified; 5ThioMC6-D: 5'-thiol modifier C6 S-S (disulfide). The text in blue represents position of primers; The text in red highlights complementary sequences in amplicons and probe nanotags; The underlined text refers to the single nucleotide polymorphism. The concentration-adjusted melting temperature (Tm) is calculated according to the nearest-neighbor formula,<sup>1,2</sup> with the concentrations of 10 mM and 3 mM for monovalent and divalent cations, respectively.

| Reaction mixture         | Volume (µL) |
|--------------------------|-------------|
| 5x MyTaq Reaction Buffer | 4           |
| KRAS F-Primer (10 µM)    | 1.2         |
| KRAS R-Primer (2.5 µM)   | 1.2         |
| MyTaq HS DNA Polymerase  | 0.3         |
| Input targets            | 2           |
| Nuclease-free water      | 11.3        |
| Total volume             | 20          |

Table S2. Reaction mixture for asymmetric PCR

| Table S3. Reaction mixture for quantitative PCR |                   |  |
|-------------------------------------------------|-------------------|--|
| Reaction mixture                                | Volume ( $\mu$ L) |  |
| iTaq Universal SYBR Green supermix (2x)         | 10                |  |
| KRAS F-Primer (10 µM)                           | 1.2               |  |
| KRAS R-Primer (2.5 µM)                          | 1.2               |  |
| Input targets                                   | 2                 |  |
| Nuclease-free water                             | 5.6               |  |
| Total volume                                    | 20                |  |



**Figure S1.** Transmission electron microscopy (TEM) image of AuNPs with size of about 60 nm (A), molecular structure of Raman reporter 5,5'-dithiobis (2-nitrobenzoic acid) (DTNB) (B), extinction spectra of bare AuNPs and SERS nanotags (C), and Raman spectra of SERS nanotags with the characteristic peak at 1339 cm<sup>-1</sup> (D).



Figure S2. SERS nanotag functionalized with DNA probe for identifying KRAS G12V mutation.



**Figure S3.** Quantitative PCR (left) and gel electrophoresis image (right, the amplification products are from 45 thermal cycles) of regular PCR with equal amounts of two primers (A) and Asy-PCR with excess forward primer to limiting reverse primer concentration ratio of 10:1 (B), respectively. The copies of input targets range from 10<sup>6</sup> to 10. NTC is the no template control.



**Figure S4.** Gel electrophoresis image of the amplicons from asymmetric-PCR (Asy-PCR) and regular PCR (Reg-PCR) with 10<sup>4</sup> input synthetic targets, and the products digested from Reg-PCR with lambda exonuclease. The molecular size of ssDNA from Asy-PCR is comparable with that of ssDNA digested from dsDNA in Reg-PCR, which confirms the target amplicons from Asy-PCR.



**Figure S5.** SERS spectra for the detection of Asy-PCR amplicons when the hybridization of ssDNA with allele-specific probe on SERS nanotags was undertaken at a constant temperature ( $37^{\circ}$ C and  $50^{\circ}$ C).



**Figure S6.** Amplification of KRAS G12V plasmid by Asy-PCR with excess to limiting primer concentration ratio of 4:1. Gel electrophoresis image (A) and typical raw Raman spectra (B) over a range of mutation loads from 1 to 10<sup>5</sup> input copies. NTC is the no template control.



Figure S7. Bar graph of average SERS intensities at 1339 cm<sup>-1</sup> over a range of mutation loads from  $10^6$  to 10 input copies. Error bar represents standard deviation (SD) of 3 independent experiments.



**Figure S8.** Gel electrophoresis image of Asy-PCR amplicons from patients' DNA samples. NTC is the no template control.

## References

- 1 J. SantaLucia, 1998, **95**, 1460-1465.
- 2 N. von Ahsen, C. T. Wittwer and E. Schütz, Clin. Chem., 2001, 47, 1956-1961.