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Figure S1. The chemical structures of PTZ-Ph, PTZ-Ph(A), PTZ(A),-Ph(A), PXZ-Ph, PXZ-Ph(A)
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and PXZ(A),-Ph(A).



Na™* + Cl”>NacCl (1)

AH=-134.31 kcal/mol; AG=-129.22 kcal/mol

Glu+ Nat—Glu-Na™ (2)

AH=-45.61 kcal/mol; AG=-37.36 kcal/mol

(PTZ - Ph) ™ + Cl”—(PTZ-Ph) " Cl~ (3)

AH=-91.81 kcal/mol; AG=-85.02 kcal/mol

Scheme S1. The calculated enthalpy changes (AH) and Gibbs free energy changes (AG) of the

reactions related to the cationization of GLC.
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Figure S2. FT-IR spectra of six matrix candidates including PTZ-Ph, PTZ-Ph(A), PTZ(A),-Ph(A),

PXZ-Ph, PXZ-Ph(A), PXZ(A),-Ph(A).
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Figure S3. UV-vis absorption spectra of matrix candidates (A) PTZ-Ph; (B) PXZ-Ph.
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Figure S4. UV-vis absorption spectra of matrix candidates (A) PTZ-Ph(A), (B) PTZ(A),-Ph(A), (C)

PXZ-Ph(A), (D) PXZ(A),-Ph(A).



Table S1. Summary of the analytes tested in this study.

Molecular Molecular
Name Abbrev. . Molecular structure
formula weight [g/mol]
OH OH
D-Glucose GLC CeHr206 180.16 i A
OH OH

CHOH

Sucrose DP2 C12H22011 342.30 Vil

OH © CH,0H
on o

Trisaccharide DP3 C1gH3,01¢ 504.44 i

Tetrasaccharide DP4 Cy4H4,0,1 666.58 aon @ o
L-Glutamine Gln CsHqoN,05 146.15 )\/\(u\
L-Glutamic Glu CsHgNO, 147.13 w

L-Phenylalanine Phe CoH11NO, 165.19 W
L-Tyrosine Tyr CsH1:NO; 181.18 /@fj)L
L-Valine Val CsH11NO, 117.15 ﬁ
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Figure S5. MALDI mass spectra of sucrose ([M+Na]*, m/z 365.29) with the matrix candidates
of PTZ-Ph, PTZ-Ph(A), PTZ(A),-Ph(A), PXZ-Ph, PXZ-Ph(A), PXZ(A),-Ph(A) in the positive-ion
mode of MALDI MS. Sucrose concentration: 100 ug/mL, laser intensity of 57 wJ, accumulated

to 3000 shots.
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Figure S6. MALDI mass spectra of trisaccharide ([M+Na]*, m/z 527.43) with the matrix

candidates of PTZ-Ph, PTZ-Ph(A), PTZ(A),-Ph(A), PXZ-Ph, PXZ-Ph(A), PXZ(A),-Ph(A) in the

positive-ion mode of MALDI MS. Trisaccharide concentration: 100 ug/mL, laser intensity of

57 W, accumulated to 3000 shots.



4
L PTZ-Ph
SIN: 0
8x10°
4x10°
0 ;3
680 685 690 695 700
s 1x10%4
5 PTZ-Ph(A)
— SIN: 35
2 8x10%
[7}]
c
E 4x10°1 l
%k
ol l 1
680 685 690 695 700
4
L PTZ(A) -Ph(A)
* SIN: 625
8x10°
4x10°
0 |
680 685 690 695 700

1x10°*-

PXZ-Ph
SIN: 6
8x10°4
4x10°-
" *
680 685 690 695 700
4
ok PXZ-Ph(A)
SIN: 30
8x10°-
4x10°
0 ES
680 685 690 695 700
4
L PXZ(A),-Ph(A)
SIN: 77
8x10°-
4x10° ¥
0.
680 685 690 695 700
m/z

Figure S7. MALDI mass spectra of tetrasaccharide ([M+Na]*, m/z 689.57) with the matrix

candidates of PTZ-Ph, PTZ-Ph(A), PTZ(A),-Ph(A), PXZ-Ph, PXZ-Ph(A), PXZ(A),-Ph(A) in the

positive-ion mode of MALDI MS. Tetrasaccharide concentration: 100 pug/mL, laser intensity

of 57 W, accumulated to 3000 shots.
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Figure S8. MALDI mass spectra of L-Valine ([M+Na]*, m/z 140.14) with the matrix candidates
of PTZ-Ph, PTZ-Ph(A), PTZ(A),-Ph(A), PXZ-Ph, PXZ-Ph(A), PXZ(A),-Ph(A) in the positive-ion
mode of MALDI MS. L-Valine concentration: 100 pg/mL, laser intensity of 57 wJ, accumulated

to 3000 shots.
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Figure S9. MALDI mass spectra of L-Glutamine ([M+Na]*, m/z 169.14) with the matrix

candidates of PTZ-Ph, PTZ-Ph(A), PTZ(A),-Ph(A), PXZ-Ph, PXZ-Ph(A), PXZ(A),-Ph(A) in the

positive-ion mode of MALDI MS. L-Glutamine concentration: 100 pug/mL, laser intensity of 57

W, accumulated to 3000 shots.
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Figure S10. MALDI mass spectra of L-Glutamic ([M+Na]*, m/z 170.12) with the matrix
candidates of PTZ-Ph, PTZ-Ph(A), PTZ(A),-Ph(A), PXZ-Ph, PXZ-Ph(A), PXZ(A),-Ph(A) in the
positive-ion mode of MALDI MS. L-Glutamic concentration: 100 pug/mL, laser intensity of 57

W, accumulated to 3000 shots.
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Figure S11. MALDI mass spectra of L-Phenylalanine ([M+Na]*, m/z 188.18) with the matrix

candidates of PTZ-Ph, PTZ-Ph(A), PTZ(A),-Ph(A), PXZ-Ph, PXZ-Ph(A), PXZ(A),-Ph(A) in the

positive-ion mode of MALDI MS. L-Phenylalanine concentration: 100 pug/mL, laser intensity

of 57 W, accumulated to 3000 shots.
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Figure S12. MALDI mass spectra of L-Tyrosine ([M+Na]*, m/z 204.17) with the matrix

candidates of PTZ-Ph, PTZ-Ph(A), PTZ(A),-Ph(A), PXZ-Ph, PXZ-Ph(A), PXZ(A),-Ph(A) in the

positive-ion mode of MALDI MS. L-Tyrosine concentration: 100 pug/mL, laser intensity of 57

W, accumulated to 3000 shots.
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Figure S13. Comparison of background noise levels of matrices, including (A) PTZ(A),-Ph(A),

(B) DHB, and (C) CHCA, in the positive-ion mode of MALDI MS. Display range: m/z 0-800.
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Figure S14. MALDI mass spectra of the D-Glucose (GLC) and L-Glutamine with PTZ(A),-Ph(A)
matrix in the positive-ion mode. The laser pulse energy levels include 49 wJ, 53 uJ, 57 W, 61

W, 65 w and 69 W, respectively. The optimal laser energy is 57 W for D-Glucose (GLC), or 61
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W for L-Glutamine (L-GIn). Accumulation: 2000 shots. Laser spot size: 50~100 um.
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Figure $15. MALDI mass spectra of the D-Glucose (GLC) and L-Glutamine with DHB matrix in

the positive-ion mode. The laser pulse energy levels include 49 pJ, 53 W, 57 W, 61 W, 65

and 69 W, respectively. The optimal laser energy is 57 W for D-Glucose (GLC), or 65 pJ for L-

Glutamine (L-GIn). Accumulation: 2000 shots. Laser spot size: 50~100 um.
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Figure S16. MALDI mass spectra of the D-Glucose (GLC) and L-Glutamine with CHCA matrix in

the positive-ion mode. The laser pulse energy levels include 49 pJ, 53 W, 57 W, 61 W, 65

and 69 pJ, respectively. The optimal laser energy is 61 ) for D-Glucose (GLC) and L-

Glutamine (L-GIn). Accumulation: 2000 shots. Laser spot size: 50~100 um.

19



) Molecule Ratio Glucose: PTZ(A),-Ph(A)= 1:50
Matrix S/N 2x10°

Glucose / PTZ(A):-Ph(A) SIN=104
1:1000 8 *
1:500 20 E
PTZ(A).- 1:250 40 ‘g
Ph(A) 1:100 68 E
1:50 104 .
1:25 78 | : ;
190 200 210 220
miz
olacule Ratio Glucose: DHB= 1:100
Matrix S/N 3x10*
Glucose / DHB SIN=603
1:200 207 _
1:100 603 )
2 *
o [}
GiEiE 1:50 434 2
1:20 156 =
1:10 13 { | |
0 Jhd\A A " A
1:5 o 190 200 210 220
miz
Y —————— Glucose: CHCA= 1:2.5
Matrix S/N 1x10*
Glucose / CHCA SIN=112
1:100 8
1:50 19 El
o 3
1:25 26z M7 *
CHCA * ?
1:10 41 £
1:5 58 I
1:2.5 112 g : :
190 200 210 220

miz

Figure S17. The optimal results of mixing ratio of analyte (GLC) and matrix (PTZ(A),-Ph(A),
DHB and CHCA) in the positive-ion mode. Different mixing ratios and signal to instrumental
noise ratios are listed in the table (left). The MS spectrum at the optimal mixing ratio is
presented by the graph (right). The optimal mixing molecule ratio for the D-Glucose (GLC)
using PTZ(A),-Ph(A), DHB and CHCA is 1:50, 1:100 and 1:2.5, respectively. Accumulation:

2000 shots. Laser spot size: 50~100 pm.
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Figure S18. The optimal results of mixing ratio of analyte (L-Glutamine) and matrix (PTZ(A),-
Ph(A), DHB and CHCA) in the positive-ion mode. Different mixing ratios and signal to
instrumental noise ratios are listed in the table (left). The MS spectrum at the optimal mixing
ratio is presented by the graph (right). The optimal mixing molecule ratio for the L-Glutamine
using PTZ(A),-Ph(A), DHB and CHCA is 1:50, 1:100 and 1:2.5, respectively. Accumulation:

2000 shots. Laser spot size: 50~100 pum.
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Figure $19. MALDI mass spectra of Sucrose (DP2), Trisaccharide (DP3) and Tetrasaccharide

(DP4) obtained from the PTZ(A),-Ph(A) matrix and the traditional matrixes of DHB and CHCA.

All analytes are tested in the concentration of 100 pg/mL.
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Figure S20. MALDI mass spectra of L-Valine (Val), L-Glutamine (GIn), L-Glutamic (Glu), L-
Phenylalanine (Phe) and L-Tyrosine (Tyr) obtained from the PTZ(A),-Ph(A) matrix and the
traditional matrixes of DHB and CHCA. All analytes are tested in the concentration of 100

ug/mL.
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Table S2. Comparison of signal to noise (S/N) ratios for selected oligosaccharides in

cationization ionization mechanisms with PTZ(A),-Ph(A), DHB and CHCA matrixes.

Table S3. Comparison of signal to noise (S/N) ratios for selected amino acids in different

Matrix PTZ(A),-Ph(A) DHB CHCA
n peak
[M+Na] * [M+Na] * [M+Na] *
Analyte
GLC 362 48 17
DP2 497 62 17
DP3 690 298 29
DP4 665 328 32

ionization mechanisms with PTZ(A),-Ph(A), DHB and CHCA matrixes.

Matrix PTZ(A),-Ph(A) DHB CHCA
n peak
Analyte [M+Na] * [M+Na] * [M+H] * [M+Na] * [M+H] *
Val 3595 127 307 123 1502
Gln 2645 454 510 18 1471
Glu 1172 34 106 0 714
Phe 3526 218 676 9 1340
Tyr 1593 45 61 7 1251
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Figure S21. The PTZ(A),-Ph(A) matrix performed highly reproducible MS signal intensity. (A)
9 different spots in the 3 x 3 array. (B) 12 different positions in a single spot of GLC/ PTZ(A),-
Ph(A). The coefficient of variation (CV) values as very small, only (A) 4.20 % in the spot-to-
spot or (B) 3.97 % in the position-to-position. Inset: The Photo of the PTZ(A),-Ph(A) as the
matrix dropped on the steel plate, forming uniform films. Analyte: D-glucose (GLC),

concentration: 100 pg/mL.
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Figure $22. The quantitative analysis of linearity and limit-of-detection for the PTZ(A),-Ph(A)
matrix. MALDI-TOF MS response curves for different concentrations glucose (GLC) with (A)
PTZ(A),-Ph(A) matrix and (C) DHB matrix. Accumulation: 3000 shots. Laser spot size: 50~100

um.
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Figure S23. (A) MALDI-TOF mass spectra of a complex sample containing four

oligosaccharides with the PTZ(A),-Ph(A) matrix. (B) MALDI-TOF mass spectra and signal-to-
noise ratio (S/N) of GLC, DP2, DP3 and DP4 in complex sample detection with the PTZ(A),-

Ph(A) matrix. The concentrations of all analytes are 250 ug/mL.
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Figure S24. (A) MALDI-TOF mass spectra of a complex sample containing four

oligosaccharides with the DHB matrix. (B) MALDI-TOF mass spectra and signal-to-noise ratio
(S/N) of GLC, DP2, DP3 and DP4 in complex sample detection with the DHB matrix. The

concentrations of all analytes are 250 ug/mL.
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Figure S25. The cationization matrix of PTZ(A),-Ph(A) applied to the detection of urine
glucose (GLC). The MALDI-TOF MS response curve used for the analysis limit-of-detection
(LOD) and limit-of-quantitative (LOQ) and corresponding typical MALDI mass spectrum of
urine glucose (GLC) detection in positive-ion mode with (A-B) PTZ(A),-Ph(A) matrix and (C-D)

DHB matrix.
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Glu + NaCl—Glu-Na™ +Cl~ (1)

AH = -88.70 kcal/mol
AG = -91.86 kcal/mol

[PTZ(A), - PR(A)]'* + Glu+ NaCl—>[PTZ(A), - Ph(A)] *Cl™ + Glu-Na*

(2)
AH = -12.90 kcal/mol
AG = -2.33 kcal/mol

[PXZ(A), - PR(A)] * + Glu+ NaCl->[PXZ(A),-Ph(A)] " Cl™ + Glu-Na*

(3)
AH = -10.36 kcal/mol
AG = 0.20 kcal/mol

Scheme S2. The calculated enthalpy changes (AH) and Gibbs free energy changes (AG) of the

reactions related to the cationization of GLC.
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Supporting Data Set 1

1. Synthesis of 10-phenyl-10H-phenothiazine (PTZ-Ph)

Pd(OAc), P(tBu);
& Br tBuONa Tol
CL0 - O o A
5 110°C 12h @ j@
S
A mixture of 10H-phenothiazine (0.797 g, 4.0 mmol), 4-bromobenzonitrile (0.691 g, 4.4 mmol), sodium
tert-butoxide (1.153 g, 12.0 mmol), catalyst Pd (OAc), (90 mg, 10 mol%), and ligand P(tBu)s (1.8 mL, 10 wt %
in toluene) in toluene (40 mL) was degassed by three freeze—pump-thaw cycles, and then heated at 110
°C for 12 hours under nitrogen atmosphere. After cooling to room temperature, the mixture was
extracted with DCM. The organic phase was collected and dried by anhydrous MgSQ,. The organic solvent

was removed under reduced pressure. The crude product was purified by column chromatography on

silica gel to afford a white solid in a yield of 73%. The spectral data matched those previously reported(?l.
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1H NMR spectrum of 10-phenyl-10H- phenothiazine (PTZ-Ph)

1H NMR (600 MHz, DMSO-ds, ppm): & = 7.67 (t, J = 7.8 Hz, 2H), 7.54 (t, J = 7.5 Hz, 1H), 7.42 (d, J = 7.3 Hz,
2H), 7.08 (dd, J = 7.6, 1.4 Hz, 2H),

———

=

= J Xy
P 5 =

DMSO

65 60 55 50 45 40 35 3.0 25 20 15 1.0 05 00
chemical shift (ppm)

13C NMR spectrum of 10-phenyl-10H- phenothiazine (PTZ-Ph)

13C NMR (151 MHz, DMSO-dg, ppm): & = 143.55, 140.32, 131.00, 130.22, 128.36, 127.23, 126.63, 122.70,
119.36, 116.04, 39.64, 39.50, 39.36.
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2. Synthesis of 10-phenyl-10H-phenoxazine (PXZ-Ph)

Pd(OAc), P(iBu)s
tBuONa Tol

oy L s O
0 O o L)

A mixture of 10H-phenoxazine (0.733 g, 4.0 mmol), 4-bromobenzonitrile (0.691 g, 4.4
mmol), sodium tert-butoxide (1.153 g, 12.0 mmol), catalyst Pd (OAc), (90 mg, 10 mol%), and
ligand P(tBu)s (1.8 mL, 10 wt% in toluene) in toluene (40 mL) was degassed by three freeze—
pump-thaw cycles, and then heated at 110 °C for 12 hours under nitrogen atmosphere.
After cooling to room temperature, the mixture was extracted with DCM. The organic phase
was collected and dried by anhydrous MgSQO,. The organic solvent was removed under
reduced pressure. The crude product was purified by column chromatography on silica gel to

afford a white solid in a yield of 73 %.
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1H NMR spectrum of 10-phenyl-10H-phenoxazine (PXZ-Ph)

1H NMR (600 MHz, DMSO-dg, ppm): & = 7.64 (t, J = 7.8 Hz, 2H), 7.52 (t, J = 7.5 Hz, 1H), 7.38 (d, J = 7.2 Hz,

2H), 6.70 (dd, J = 7.5, 1.9 Hz, 2H), 6.66 —6.60 (m, 4H), 5.80 (dd, J = 7.5, 1.9 Hz, 2H).

o~
o
i
c

55 50 45 40 35 3.0 25 20 1.5 10 05 0.0
chemical shift (ppm)

13C NMR spectrum of 10-phenyl-10H-phenoxazine (PXZ-Ph)

13C NMR (151 MHz, DMSO-dg, ppm): 6 =143.08, 138.26, 133.89, 131.32, 130.39, 128.77, 123.64, 121.38,

115.24, 113.07, 39.64, 39.50, 39.36.
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Supporting Data Set 2

3. Synthesis of 4-(10H-phenothiazin-10-yl) benzoic acid (PTZ-Ph(A))

COOMe COOH
Pd(OAc), P(tBu)s NaOH
COOMe CsCO; Tol H20 dioxane

—_— —_—
110°C 12h @[N:@ 105°C 12h @Njg
S S

A mixture of 10H-phenothiazine (0.399 g, 2.0 mmol), methyl 4-bromobenzoate (0.473 g,

oy -

2.2 mmol), CsCO;3 (4.955 g, 6.0 mmol), catalyst Pd(OAc), (45 mg, 10 mol%), and ligand
P(tBu)s; (0.9 mL, 10 wt% in toluene) in toluene (40 mL) was degassed by three freeze—pump—
thaw cycles, and then heated at 110 °C for 12 hours under nitrogen atmosphere. After
cooling to room temperature, the mixture was extracted with DCM. The organic phase was
collected and dried by anhydrous MgSQO,. The organic solvent was removed under reduced
pressure. The crude product was purified by column chromatography on silica gel to afford a
primrose yellow solid in a yield of 77%.

To a solution of methyl 4-(10H-phenothiazin-10-yl) benzoate (0.333 g, 1.0 mmol) in 20 mL
of dioxane, a solution of NaOH (0.320 g, 8 mmol) in H,O (10 mL) was added, then stirred
under argon atmosphere at 105 °C for 12h. After cooling down to room temperature, the
concentrated HCI ag. solution (37 %, 10 mL) was added into the mixture and the precipitate

was filtered and washed with water and hexane to give the pure product in 96% yield.
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1H NMR spectrum of 4-(10H-phenothiazin-10-yl) benzoic acid (PTZ-Ph(A))

1H NMR (400 MHz, DMSO-ds, ppm): & = 12.88 (s, 1H), 7.99 (d, J = 8.8 Hz, 2H), 7.34 (dd, J = 7.6, 1.5 Hz, 2H),
6.85
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13C NMR spectrum of 4-(10H-phenothiazin-10-yl) benzoic acid (PTZ-Ph(A))

13C NMR (101 MHz, DMSO-dg, ppm): & = 166.79, 146.71, 141.93, 131.57, 127.85, 127.64, 126.73, 126.47,

124.82,122.35,121.74, 39.71, 39.50, 39.29.
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4. Synthesis of 10-(4-carboxyphenyl)-10H-phenothiazine-3,7-dicarboxylic acid

(PTZ(A)-Ph(A))

Br COOEt COCH

NBS NaOH
THF 1) BuLi THF -78°C 1h H:O dioxane
N —_— —_— —_—
@: :@ 0°C o rt, 4h N 2) NCCOOG;Hs N 105°C 12h N
; LA, e I IO SO
Br s Br E00C s COOEt HooC s COOH

4.1 Synthesis of 3,7-dibromo-10-(4-bromophenyl)-10H-phenothiazine

To a solution of PTZ-Ph (0.827 g, 3.0 mmol) in 20 mL of tetrahydrofuran (THF), a solution
of N-bromosuccinimide (1.922 g, 10.8 mmol) in THF (10 mL) was added dropwise at 0 °C,
then stirred under argon atmosphere at room temperature for a period of 4 h. After the
reaction, the mixture was extracted with DCM three times. The combined organic layer was
washed with water and then dried over anhydrous MgS0O,. The solvent was removed by
evaporation under reduced pressure. The crude product was purified by column

chromatography on silica gel to afford a primrose white solid in a yield of 70 %.
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1H NMR spectrum of 3,7-dibromo-10-(4-bromophenyl)-10H-phenothiazine

1H NMR (400 MHz, DMSO-ds, ppm): & = 7.86 (d, J = 8.7 Hz, 2H), 7.41 (d, J = 8.7 Hz, 2H), 7.32 (d, J = 2.3 Hz,

2H), 7.12 (dd, /= 8.8, 2.3 Hz, 2H), 6.06 (d, / = 8.8 Hz, 2H).
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13C NMR spectrum of 3,7-dibromo-10-(4-bromophenyl)-10H-phenothiazine

13C NMR (101 MHz, DMSO-dg, ppm): & = 142.23, 138.96, 134.37, 132.43, 130.12, 128.53, 121.91, 121.28,

117.73, 114.39, 39.71, 39.50, 39.29.
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chemical shift (ppm)
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4.2. Synthesis of diethyl 10-(4-(ethoxycarbonyl) phenyl)-10H-phenothiazine-3,7-
dicarboxylate

To a suspension of 1.024 g (2.0 mmol) of 3,7-dibromo-10-(4-bromophenyl)-10H-
phenothiazine in 20 mL of anhydrous THF at -78 °C, a portion of 2.9 mL of n-BulLi (7.2 mmol,
2.5 M solution in n-hexane) was slowly added, and the reaction mixture was stirred for 1
hour. The NCCOOC;Hs (9 mmol, 0.9 mL) was added to above reaction mixture at same
temperature, then stirred under argon atmosphere at room temperature overnight. After
the reaction, the reaction mixture was poured into water and extracted with DCM. The
combined organic layer was washed with water, dried over anhydrous MgSQO,. The solvent
was removed by evaporation under reduced pressure. The crude product was purified by

column chromatography on silica gel to afford a primrose yellow solid in a yield of 55 %.
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IH NMR spectrum of diethyl 10-(4-(ethoxycarbonyl) phenyl)-10H-phenothiazine-3,7-

dicarboxylate

1H NMR (600 MHz, DMSO-ds, ppm): & = 8.24 (d, J = 8.4 Hz, 2H), 7.63 (d, J = 8.4 Hz, 2H), 7.55 (d, J = 1.6 Hz,
2H), 7.46 (dd, J = 8.7, 1.8 Hz, 2H), 6.13 (d, J = 8.7 Hz, 2H), 4.36 (d, J = 7.1 Hz, 2H), 4.22 (q, J = 7.1 Hz, 3H),

1.34 (t,J = 7.1 Hz, 4H), 1.24 (t, J = 7.1 Hz, 6H).
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13C NMR spectrum of diethyl 10-(4-(ethoxycarbonyl) phenyl)-10H-phenothiazine-3,7-
dicarboxylate

13C NMR (151 MHz, DMSO-dg, ppm): & = 164.91, 164.41, 145.72, 143.26, 132.32, 130.68, 130.54, 129.10,

127.19, 124.86, 118.74, 115.94, 61.13, 60.62, 39.64, 39.50, 39.36, 14.10.
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4.3 Synthesis of 10-(4-carboxyphenyl)-10H-phenothiazine-3,7-dicarboxylic acid (PTZ(A),-
Ph(A))

To a solution of diethyl 10-(4-(ethoxycarbonyl) phenyl)-10H-phenothiazine-3,7-
dicarboxylate (0.246 g, 0.5 mmol) in 20 mL of dioxane, a solution of NaOH (0.160 g, 4 mmol)
in H,O (10 mL) was added, then stirred under argon atmosphere at 105 °C for 12 h. After
cooling down to room temperature, the concentrated HCl ag. solution (37 %, 10 mL) was
added into the mixture and the precipitate was filtered and washed with water and hexane

to give the pure product in 95 % yield.
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IH NMR spectrum of 10-(4-carboxyphenyl)-10H-phenothiazine-3,7-dicarboxylic acid (PTZ(A),-
Ph(A))

1H NMR (600 MHz, DMSO-d,, ppm): 6 = 12.90 (s, 3H), 8.21 (d, J = 8.5 Hz, 2H), 7.59 (d, J = 8.5 Hz, 2H), 7.53
(d, J = 2.0 Hz, 2H), 7.45 (dd, J = 8.7, 2.0 Hz, 2H), 6.12 (d, J = 8.7 Hz, 2H).

00 <t W0 < W = DO 0C b= e (=
Tl —nwndodiknd O ool f=3

a anNochngE LT o~ woe R

— R O e S S S L. e ri

| Sl N Y G P 7 |
COOH

o0
HOQC g ‘COOH

DMSO
— JL ]JJ |_»'“\_ ,J\ 1
A Swow B
- S 5]
] NN e o
13.0 12.0 11.0 10.0 9.0 8.0 7.0 6.0 5.0

4.0 3.0 2.0

[a)

hemical shift (ppm)

13C NMR

spectrum of 10-(4-carboxyphenyl)-10H-phenothiazine-3,7-dicarboxylic

acid
(PTZ(A)2-Ph(A))

13C NMR (151 MHz, DMSO-dg, ppm); & = 166.53, 166.03, 145.64, 143.12, 132.44, 131.49, 130.54, 129.26,
127.46, 125.73, 118.62, 115.86, 39.64, 39.50, 39.36.
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5. Synthesis of 4-(10H-phenoxazine-10-yl) benzoic acid (PXZ-Ph(A))

COOMe COOH
Pd(QAG), P(tBu); NaOH
COOMe CsCO; Tol Hz0 dioxane

_— —_—
110°C 12h @N@ 105°C 12h @N:@
o] o]

A mixture of 10H-phenoxazine (0.366 g, 2.0 mmol), methyl 4-bromobenzoate (0.473 g, 2.2

an - O

mmol), CsCO; (4.955 g, 6.0 mmol), catalyst Pd(OAc), (45 mg, 10 mol%), and ligand P(tBu);
(0.9 mL, 10 wt% in toluene) in toluene (40 mL) was degassed by three freeze—pump—thaw
cycles, and then heated at 110 °C for 12 hours under nitrogen atmosphere. After cooling to
room temperature, the mixture was extracted with DCM. The organic phase was collected
and dried by anhydrous MgSQO,. The organic solvent was removed under reduced pressure.
The crude product was purified by column chromatography on silica gel to afford a primrose
yellow solid in a yield of 77 %.

To a solution of methyl 4-(10H-phenoxazine -10-yl) benzoate (0.317 g, 1.0mmol) in 20 mL
of dioxane, a solution of NaOH (0.320 g, 8 mmol) in H,0 (10 mL) was added, then stirred
under argon atmosphere at 105 °C for 12 h. After cooling down to room temperature, the
concentrated HCl aqg. solution (37 %, 10 mL) was added into the mixture and the precipitate

was filtered and washed with water and hexane to give the pure product in 96 % yield.
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1H NMR spectrum of 4-(10H-phenoxazine-10-yl) benzoic acid (PXZ-Ph(A))

IH NMR (600 MHz, DMSO-dg, ppm) & = 13.18 (s, 1H), 8.17 (d, J = 8.4 Hz, 2H), 7.53 (d, J = 8.4 Hz, 2H), 6.74

(dd, J=7.7, 1.6 Hz, 2H), 6.66 (dtd, J=21.7, 7.5, 1.6 Hz, 4H), 5.87 (dd, J = 7.8, 1.6 Hz, 2H).
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13C NMR spectrum of 4-(10H-phenoxazine-10-yl) benzoic acid (PXZ-Ph(A))

13C NMR (151 MHz, DMSO-dg, ppm): & = 166.59, 143.15, 142.55, 133.34, 132.29, 130.90, 130.70, 123.74,

121.80, 115.43, 113.33, 39.64, 39.50, 39.36.
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6. Synthesis of 10-(4-carboxyphenyl)-10H-phenoxazine -3,7-dicarboxylic acid

(PXZ(A),-Ph(A))

Br COOEt COOH
NBS 1) BuLi THF NaCH

THF -78°C 1h H:zO dioxane
—_— —_—

N —_—
@: K) 0°Ctort. 4h N 2) NCCOOCHs N 105°C 12h N
: Jebo e b £
Br o Br EtOOC 0 COOE HOOC o COOH

6.1 Synthesis of 3,7-dibromo-10-(4-bromophenyl)-10H-phenoxazine

To a solution of PXZ-Ph (0.778 g, 3.0 mmol) in 20 mL of tetrahydrofuran (THF), a solution
of N-bromosuccinimide (1.922 g, 10.8 mmol) in THF (10 mL) was added dropwise at 0 °C,
then stirred under argon atmosphere at room temperature for a period of 4 h. After the
reaction, the mixture was extracted with DCM three times. The combined organic layer was
washed with water and then dried over anhydrous MgSQ,. The solvent was removed by
evaporation under reduced pressure. The crude product was purified by column

chromatography on silica gel to afford a primrose white solid in a yield of 70 %.
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1H NMR spectrum of 3,7-dibromo-10-(4-bromophenyl)-10H-phenoxazine

1H NMR (400 MHz, DMSO-ds, ppm): & = 7.87 (td, 2H), 7.42 (td, 2H), 6.95 (d, J = 2.2 Hz, 2H), 6.86 (dd, J = 8.6,

2.2 Hz, 2H), 5.80 (d, J = 8.6 Hz, 2H).
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13C NMR spectrum of 3,7-dibromo-10-(4-bromophenyl)-10H-phenoxazine

13C NMR (151 MHz, DMSO-d,, ppm): & = 143.50, 136.82, 134.62, 132.71, 132.60, 126.67, 122.30, 118.00,

114.76, 112.20, 39.64, 39.50, 39.36.
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6.2. Synthesis of diethyl 10-(4-(ethoxycarbonyl) phenyl)-10H-phenoxazine-3,7-
dicarboxylate

To a suspension of 0.992 g (2.0 mmol) of 3,7-dibromo-10-(4-bromophenyl)-10H-
phenoxazine in 20 mL of anhydrous THF at -78 °C, a portion of 2.9 mL of n-BulLi (7.2 mmol,
2.5 M solution in n-hexane) was slowly added, and the reaction mixture was stirred for 1
hour. The NCCOOC;Hs (9 mmol, 0.9 mL) was added to above reaction mixture at same
temperature, then stirred under argon atmosphere at room temperature overnight. After
the reaction, the reaction mixture was poured into water and extracted with DCM. The
combined organic layer was washed with water, dried over anhydrous MgSQO,. The solvent
was removed by evaporation under reduced pressure. The crude product was purified by

column chromatography on silica gel to afford a primrose yellow solid in a yield of 55 %.
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IH NMR spectrum of diethyl 10-(4-(ethoxycarbonyl) phenyl)-10H-phenoxazine-3,7-

dicarboxylate

1H NMR (400 MHz, DMSO-d,, ppm): & = 8.26 (d, J = 8.4 Hz, 2H), 7.66 (d, J = 8.4 Hz, 2H), 7.30 (dd, J = 8.4,
1.8 Hz, 2H), 7.21 (d, J = 1.8 Hz, 2H), 5.96 (d, J = 8.4 Hz, 2H), 4.38 (q, J = 7.1 Hz, 2H), 4.24 (q, J = 7.1 Hz, 4H),

1.36 (t,J = 7.1 Hz, 3H), 1.27 (t, J = 7.1 Hz, 6H).
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BBC NMR spectrum of diethyl 10-(4-(ethoxycarbonyl) phenyl)-10H-phenoxazine-3,7-

dicarboxylate

13C NMR (101 MHz, DMSO-dg, ppm): & = 164.87, 164.47, 142.65, 140.93, 136.55, 132.37, 130.80, 130.53,

125.93, 123.74, 115.50, 113.25, 61.09, 60.46, 39.71, 39.50, 39.29, 14.07.
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6.3 Synthesis of 10-(4-carboxyphenyl)-10H-phenoxazine -3,7-dicarboxylic acid (PXZ(A),-
Ph(A))

To a solution of diethyl 10-(4-(ethoxycarbonyl) phenyl)-10H-phenoxazine-3,7-
dicarboxylate (0.238 g, 0.5 mmol) in 20 mL of dioxane, a solution of NaOH (0.160 g, 4 mmol)
in H,O (10 mL) was added, then stirred under argon atmosphere at 105 °C for 12 h. After
cooling down to room temperature, the concentrated HCl ag. solution (37 %, 10 mL) was
added into the mixture and the precipitate was filtered and washed with water and hexane

to give the pure product in 95 % yield.
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1H NMR spectrum of 10-(4-carboxyphenyl)-10H-phenoxazine -3,7-dicarboxylic acid (PXZ(A),-
Ph(A))

1H NMR (400 MHz, DMSO-ds, ppm): & = 12.91 (s, 3H), 8.24 (d, J = 8.3 Hz, 2H), 7.63 (d, J = 8.2 Hz, 2H), 7.29

(d, J = 8.5 Hz, 2H), 7.20 (s, 2H), 5.94 (d, J = 8.4 Hz, 2H).
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13C NMR spectrum of 10-(4-carboxyphenyl)-10H-phenoxazine -3,7-dicarboxylic acid (PXZ(A),-
Ph(A))

13C NMR (101 MHz, DMSO-dg, ppm): & = 166.47, 166.10, 142.60, 140.80, 136.39, 132.50, 131.75, 130.38,

126.06, 124.62, 115.75, 113.11, 39.71, 39.50, 39.29.
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Abbreviations:
PTZ-Ph: 10-phenyl-10H-phenothiazine

PXZ-Ph: 10-phenyl-10H-phenoxazine

PTZ-Ph(A): 4-(10H-phenothiazin-10-yl) benzoic acid

PXZ-Ph(A): 4-(10H-phenoxazine-10-yl) benzoic acid

PTZ(A),-Ph(A): 10-(4-carboxyphenyl)-10H-phenothiazine-3,7-dicarboxylic acid

PXZ(A),-Ph(A): 10-(4-carboxyphenyl)-10H-phenoxazine-3,7-dicarboxylic acid
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