Electronic Supporting Information

For

Point-of-care testing of melamine via gas pressure readout using polythymine-coated Au@Pt nanopartices through specific triple hydrogen-bonding recognition

Ling Li, Han Wen Deng, Zhong Shuai Zhao, and Zhong De Liu*

Key Laboratory of Luminescence and Real-Time Analytical Chemistry (Southwest University), Education Ministry, College of Pharmaceutical Sciences, Southwest University, Chongqing 400715, China.

^{*} To whom all correspondence should be addressed. Tel: 86-23-68251910; Fax: 86-23-68251048; orcid.org/0000-0001-9638-7163; E-mail: 2297225390@qq.com

Figure S1 Pressure (P) profiles of the H_2O_2 decomposition reaction against the measure time in the presence of different platinum nanozymes. Concentrations: 200 μ L of 30% (w/v) H_2O_2 .

Figure S2 The catalytic activity determination of the Au@PtNPs between different batches. Concentration: Au@PtNPs, 4.2 μ M; 200 μ L of 30% (w/v) H₂O₂.

Figure S3 The stability of catalytic activity of the poly- T_{55} coated Au@PtNPs. Concentration: Au@PtNPs, 4.2 μ M; Poly- T_{55} , 50.0 nM; 200 μ L of 30% (w/v) H₂O₂.

Figure S4 (a) The particle size information of AuNPs before and after deposition of a thin Pt layer; (b) UV-vis absorbance spectra of the AuNPs and Au@PtNPs.

Figure S5 Pressure change profiles of the H_2O_2 decomposition reaction for 15 min with the increasing concentrations of NaCl in the absence (purplish red curve) and presence of the single-stranded DNA oligomers including polyT₅₅ (black curve), polyA₅₅ (red curve) and polyC₅₅ (blue curve). Au@PtNPs, 4.2 µM; polyT₅₅, polyA₅₅ and polyC₅₅, 50 nM; 200 µL of 30% (w/v) H₂O₂.

Figure S6 Influence of sequence length of $polyT_n$ on the pressure change profiles of the H_2O_2 decomposition reaction against the measure time in the presence of the same concentration of melamine. Concentration: melamine, 2.5 μ M; 200 μ L of 30% (w/v) H_2O_2 .