
1

A line-broadening free real-time 31P Pure Shift

NMR method for phosphometabolomic analysis

Karl Kristjan Kaup,a,b Lauri Toom,b Laura Truu,a Sten Miller,a Marju Puurand,a Kersti Tepp,a Tuuli

Käämbre,a Indrek Reilea

Electronic Supplementary Information

a. National Institute of Chemical Physics and Biophysics, Akadeemia tee 23, Tallinn 12618, Estonia.
b. Institute of Chemistry, University of Tartu, Ravila 14A, 50411 Tartu, Estonia.

Electronic Supplementary Material (ESI) for Analyst.
This journal is © The Royal Society of Chemistry 2021

2

Contents

1. Reagents, chemicals and experimental conditions ... 3

2. Rat heart perfusion experiment for 18O labelling of ATP .. 3

3. Method performance at different data chunk and gap lengths ... 4

4. SAPPHIRE implementation ... 6

5. Comparison of the presented method with other Pure Shift techniques 7

6. Application to a mixture of 18O-labelled ATP and ADP ... 9

7. Instructions to setting up the experiment... 9

8. Instructions for data processing .. 10

9. Pulse sequence ... 11

10. Data processing script .. 16

11. Additional au macros ... 21

3

1. Reagents, chemicals and experimental conditions

All standard substances (ATP, CTP, UTP) were bought from Sigma Aldrich. D2O and H2
18O were

received as a donation from Cambridge Laboratories, Inc. Solutions were prepared gravimetrically

whenever feasible. pH of all solutions was carefully adjusted before NMR measurements. NMR

measurements were conducted either in good quality 5 mm NMR tubes or Shigemi tubes.

All NMR experiments were run on the 700 MHz Bruker Avance III spectrometer, located in the

Institute of Chemistry of the University of Tartu. 31P NMR was carried out with a BBO probe at 6 ˚C

sample temperature. All samples were allowed to temperature equilibrate for 15 min in the probe

before analysis. The probe was tuned and matched for every sample and the 90˚ pulse for 31P was

calibrated. The 90˚ pulse for 31P was found to be between 14.7-14.9 µs for all samples. Soft pulses

for active and passive spin refocusing were 4.080 ms long RSnob pulses, corresponding to approx.

450 Hz bandwidth. The soft pulse bandwidth has to be selected so that all targeted spins (i.e. active

spins) experience a uniform rotation, while untargeted spins (i.e. passive spins) are not perturbed.

This is an important consideration when choosing the passive spin refocusing pulse, since this is

pulse is applied for ~40 times. Any errors from this pulse would lead to imperfect refocusing during

consecutive data chunks. Small imperfections can be alleviated by applying a supercycle to the

passive spin refocusing pulse, but this will not resolve larger errors, which will eventually lead to

faster FID decay and more artefacts.

The pulse program herein was developed and run in Bruker Topspin 3.5pl6 software. The authors

expect the code to run on other versions of Topspin 3.x, however this has not been tested. The

present implementation relies on Bruker Wavemaker macro for optimization of soft pulses. This

macro is not included by default starting from Topspin 3.5pl6. However, soft pulses can be optimized

by other means (i.e. Shapetool), if Wavemaker is not available.

The presented data processing macro was developed in Bruker Topspin 3.5pl6 and has also been

tested in Topspin 3.6.2. Detailed instructions for applying the code are given below.

The authors are publishing the pulse program and macro codes without any warranties. We have

successfully recorded the presented spectra with these programs, but we take no responsibility for

potential adverse effects on other users’ instrumentation when implementing this method.

2. Rat heart perfusion experiment for 18O labelling of ATP

Wistar line male adult rats 300-400g were anaesthetized by intraperitoneal injection of ketamine (75

mg/kg) and dexmedetomidin (1 mg/kg); the blood was protected against coagulation by injection of

heparin. The heart was quickly excised preserving a part of aorta and placed in an aerated perfusion

solution, modified Krebs medium, with the following composition: 118 mM NaCl, 5.3 mM KCl, 1.2

mM MgSO4, 0.5 mM EDTA, 25 mM NaHCO3, 11 mM Glucose, and 2 mM CaCl2 (pH 7.4). The heart was

cannulated via aorta (Langendorf system) and perfused with the solution with a flow rate of 15

ml/min during 5 minutes. Then the heart was perfused for 10 minutes with the same solution where

30% of the H2
16O was replaced with H2

18O. The perfusate was continuously aerated and its

temperature was kept at 37°C. After that the heart was quickly frozen with liquid nitrogen (freeze

clamp method) and the heart muscle was used for experiments.

4

Rats were housed under standard laboratory conditions (at 22°C constant temperature and a 12:12

h light/dark cycle with free access to food and water). Animal experiments were approved by the

Estonian National Board of Animal Experiments in accordance with the European Community

Directive (86/609/EEC).

NMR Sample preparation from freeze clamped heart muscle

The heart tissue was ground in liquid nitrogen using a mortar and pestle. Then weighed and

subjected to an extraction solution: 0.6 M HClO4, 1 mM EDTA (1 mL extraction solution per 100 mg

tissue), stirred vigorously and kept on ice for 5 min. The mixture was neutralized (pH 7.2) with 2 M

KH2CO3 and centrifuged at 2253 x g for 10 min, at +4 C. The supernatant was removed and treated

with Chelex 100 sodium form with constant stirring at +4 C, overnight. The extract was

centrifuged for 5 min 2253 x g at +4 C the supernatant was removed, frozen in liquid nitrogen and

lyophilized. The dry residue was taken up in 300 uL of D2O, pH adjusted to 9.5 with NaOH aq and

loaded into a Shigemi NMR tube.

Purification of 18O labelled ATP from the perfused heart sample by preparative LC

ATP was isolated from the primary NMR sample by LC (GE Healthcare ÄKTAPrime Plus), using a

Mono Q HR 5/5 ion-exchange column (Pharmacia Biotech) with triethylammonium bicarbonate

(TEAB) buffer pH 8.8 (gradient from 0-85%) at a 0.4 ml min-1 flow-rate. Analytes were detected with

a UV detector fixed at 280 nm. ATP containing fractions were combined, lyophilized, reconstituted in

300 uL of D2O, pH adjusted to 9.5 with NaOH aq and loaded into a Shigemi NMR tube.

3. Method performance at different data chunk and gap lengths

The method herein works by extrapolating the information from within the limited duration data

chunks into the gaps in FID by linear extrapolation (LP). A certain number of datapoints has to be

predicted, based on the limited number of data points available. In order to gauge, how many points

can be reliably predicted from our usual gap length of 20-25 ms, the macro was tested on a

simulated FID of a single signal. Chunk length was fixed at 21,28 ms, representing 600 points and the

gap length was varied. It followed that if the gap is smaller than approximately a quarter of the

chunk length, then LP does not induce additional artefacts. In other words, based on a ~20 ms (600

points) chunk, about 5 ms of data (150 points) can be predicted. In the actual experiment we are

only predicting half of the gap in either direction, which relives the condition further during most of

thechunked FID. However, the 1st chunk is shorter than the later ones, posing the most critical

boundrary condition for setting up the experiment.

If too many points are predicted, noticeable errors from the expected FID evolution occur (Fig. S1

displays an extreme case). Fourier transform of such FID intoduces artefacts (Fig. S2) – similar

artefacts occur in real spectra if too many points are being predicted. In turn, if a resonable number

of points are being predicted, good quality FID can be obtained (Fig. S3), which yields a high quality

spectrum after FT.

5

Figure S1. Processed FID with gap length equal to chunk length at 600 points.

Figure S2. Spectrum from Fourier Transform of FID from S1.

Figure S3. Processed FID with gap length equal to a quarter of chunk length (150 points).

The considerations for choosing the length of data chunks are similar to any other PS methods: it is

limited by the fact that the slight amount of J-development during the chunk must stay negligible.

The difference from most other PS techniques is that on top of J-evolution during data chunks, we

need to consider evolution during the gaps: J-evolution is refocused in the middle of chunks, but

then evolution will be further elongated by LP until the mid-point of each gap. The chunk cannot be

too short, because linear prediction fares better there are more points to extrapolate upon. Linear

prediction will also fare better if the gap is shorter (i.e. the ratio of chunk to gap length is bigger).

The length of the gap should be as short as possible, but in practice, it is determined mainly by the

6

length of the soft refocusing pulse that has to uniformly rotate the targeted spins and leave others

unperturbed.

The method can handle data with different numbers or signals (frequencies) in the FID-s. As long as

the number of extrapolated frequency components, set by the parameter NCOEF in TopSpin, is

sufficiently larger than the number of expected signals, its value does not influence spectral quality.

Consequently, the data processing macro sets NCOEF=1000, which should also handle well

significantly more complex spectra than what is presented herein.

4. SAPPHIRE implementation

Chunking sidebands are relieved by using the SAPPHIRE method.1 The simplest first order SAPPHIRE

implementation would be to shift the phase of J-modulation by half of the periodic unit. As the

original experiment starts with J-modulation at its maximum value, then the second experiment is

manipulated to start at minima. The length of the first chunk is also changed (in the first order case,

doubled) accordingly. This is achieved by using multiple gradient spin echo blocks to refocus the

chemical shift of active spins while manipulating the J-evolution as needed. These two different

experiments cause chunking sidebands with opposite phases, cancelling out at summation (Fig. 4,

main text). First order implementation of SAPPHIRE cancels out the first order (highest intensity)

sidebands.

The logic behind calculating the delays τ2 (d18 in pulse program), τ3 (d47 in pulse program) and τ4

(d19 in pulse program) is similar to and directly derived from the original SAPPHIRE publication by

the Morris group1:

τ2: d18 = larger(d62/4 - cnst47*d62/2,0)

τ3: d47 = d62/4 - abs(d18-d19)

τ4: d19 = larger(- d62/4 + cnst47*d62/2,0)

where d62 is the time duration of data chunks and cnst47 sets the SAPPHIRE order, which takes the

values of 0, 0.25, 0.5 and 0.75 in present work. SAPPHIRE order is determined by the number of

experiments with opposite J-modulation phase. The first order case therefore consists of two

experiments (cnst47 values 0 and 0.5), with first experiment starting with maximum J-modulation

phase and second starting at the minimum of J-modulation, cancelling out first order artefacts.

Higher SAPPHIRE orders double on the number of experiments from the previous order (1st order

consists of 2 experiments, 2nd order of 4 – cnst47 values 0, 0.25, 0.5, 0.75 - and so on). Higher order

artefacts need to be cancelled from all experiments of the previous order and to keep the first order

artefacts cancelled, it is necessary for the added experiments to also cancel the first order artefacts

within themselves.

We have introduced a slight modification to the SAPPHIRE logic by adding an extra delay τ1 in the

first PFGSE before acquisition:

τ 1: d31 = (7/8 - cnst47)*d56/2,

where d56 is the time duration of FID gaps. In our approach, the J-evolution maxima are not at the

ends of the chunks (as in the original SAPPHIRE) but rather at the center of the gaps. This extra delay

serves to account for the additional gap length - in the original SAPPHIRE sequence, the gap is

7

neglected and therefore not necessary to be accounted for. However, herein J-evolution will be

extrapolated further until the mid-points of the gaps.

Technically our method allows to use SAPPHIRE up to third order, but as the length of the first chunk

goes smaller with each higher order, third order implementation requires the use of experiments

with very short first chunk lengths which can cause rolling artefacts in the spectra (Similar to Fig. S2)

and incorrect cancellation of chunking sidebands. That being said, in certain cases with a very short

gap length, it might be useful to extend SAPPHIRE to third order. We have, however, limited us to

the 2nd order in results that are presented in main text.

5. Comparison of the presented method with other Pure Shift

techniques

A comparison is presented in Table S1 and graphically in Figure S4 below, followed by a brief

description of observations. All pure shift spectra were acquired with identical data chunk lengths

(20 ms) and acquisition times, as described in the experimental section of main text. All experiments

in Figure S4 and Table S1 were acquired in one measurement session, with no adjustments to

instrumental settings, once the experiment sequence was started. All FID-s were acquired in 16k

points and zero filled to 32k points before Fourier transformation without any window functions

applied.

Table S1. Quantitative comparison of spectra from Figure S4.

Pos in Fig
S4

Pure Shift
Technique

Line width,
Hz

Signal
intensity

factor

Artefact
intensity

Acquisition
time

a Regular 1D 2,0 1,0 - 14 min

b Real time LP 2,0 1,2 1,8% 14 min

c Interferogram 1,9 1,4 -7,4% 9 h, 10 min

d Real time 4,1 0,9 9,5% 14 min

8

Figure S4. Comparison of regular 1D (trace a) 31P spectrum of ATP β-phosphate with Pure Shift

spectra required with the method presented in this work (trace b), with a pseudo-2D interferogram

acquisition scheme (trace c) and traditional real-time acquisition (trace d).

Methods a, b and c yield near-identical line shapes, the apparently narrower line shape from trace c)

in Table S1 is the result of data rounding. As expected, the traditional real-time acquisition scheme

introduces line broadening, whereas interferogram acquisition introduces a large increase in

measurement time. The method herein yields good line shape and artefact suppression, while its

signal intensity falls short of the interferogram acquisition scheme. However, we argue that this

penalty is compensated by the difference in measurement time.

Note that although recorded data chunk durations were equal for traces b), c) and d) in Figure S4,

trace b) displays artefacts at a different distance from main signal. This is due to the fact that the LP

procedure effectively increases chunk duration: the period of the artefact causing FID modulation

will be the sum of chunk and gap durations (see main text Figure 4).

The first sub-experiment of the semi-real time pure shift experiment (main text Ref. 23) is identical

to the interferogram acquisition scheme in its pulse sequence, until acquisition starts. Consequently,

the line width and signal intensity properties of the semi-real time experiment are expected to be

similar to interferogram acquisition. Since neither include any artefact suppression techniques, we

expect also the artefact intensities to be similar. The semi-real time approach (main text Ref. 23) has

a sensitivity benefit, compared with the method presented in this work, but this benefit is not

sufficient to compensate for the two-fold increase in measurement time for the ATP signals that we

analyze in this work.

9

The SAPPHIRE (main text Ref. 20) acquisition scheme was originally demonstrated for interferogram

acquisition, where it yielded the most artefact free pure shift spectra up to date. Up until acquisition

starts, the pulse sequences for interferogram SAPPHIRE and the work herein are similar.

Consequently, we expect the intensity performance to be similar to our work and acquisition time to

be the same as for pseudo-2D interferogram acquisition. The artefact suppression performance of

pseudo-2D-SAPPHIRE is likely to be superior compared to the method presenter in this work:

repeated refocusing pulses during acquisition and linear prediction are both sources of additional

errors that reduce artefact suppression performance.

6. Application to a mixture of 18O-labelled ATP and ADP

Figure S5. Application of the method for a mixture of ATP and ADP, acquired with 2048 scan (4x512

scans for SAPPHIRE experiments in Pure Shift (upper trace). Note that herein, when measuring ATP-

γ, both the ADP-α and ATP-β regions need to be treated as passive spins, excluding the option to

acquire PS spectra for ATP-α and ATP-γ simultaneously (I.e., main text, Fig. 2).

7. Instructions to setting up the experiment

The experiment is best set up based on an underlying 1D 31P spectrum. Acquisition time, spectral

width, number of acquired points can be directly derived from the underlying regular 1D

experiment. Experiment specific considerations are:

10

a) The number of acquired scans should be divided into four distinct datasets: the overall

number of scans will remain the same, but they will be acquired in 4 distinct 1D

experiments, and the FID will be added together after data processing.

b) These four experiments will differ by the value of parameter cnst47, which should take

values 0, 0.25, 0.5 and 0.75 in the for experiments. All other acquisition parameters should

be kept to same.

c) The FID chunk length is chosen by the operator with setting the value for cnst20. This

parameter should be entered as the number of complex points that will make up the chunk.

The spectrometer will calculate the time duration of the chunk and display it as d62. In

present work, we used cnst20 = 400, corresponding to chunk length of about 20 ms. We

recommend using even values for cnst20.

d) The desired bandwidth for active spins refocusing pulse (in ppm, usually an RSnob pulse) is

entered as cnst31, We used 1.6 ppm bandwidth for all soft pulses.

e) Set the offset of the active spins refocusing pulse as cnst32 (as offset from the carrier

frequency, i.e. distance from O1P, in ppm).

f) If multiple active spins are targeted at once (i.e. when measuring α and γ phosphates at

once), enter the bandwidth for the 2nd excitation region as cnst33. Otherwise set cnst33 = 0.

g) If multiple active spins are targeted, enter the offset of the 2nd excitation region as cnst34 (as

offset from the carrier frequency, i.e. distance from O1P, in ppm).

h) The desired bandwidth for passive spins refocusing pulse (in ppm, usually an RSnob pulse) is

entered as cnst41, We used 1.6 ppm bandwidth for all soft pulses.

i) Set the offset of the active spins refocusing pulse as cnst42 (as offset from the carrier

frequency, i.e. distance from O1P, in ppm).

j) If multiple passive spins are targeted at once (i.e. when measuring β phosphate), enter the

bandwidth for the 2nd excitation range as cnst43. Otherwise set cnst43 = 0.

k) If multiple active spins are targeted, enter the offset of the 2nd excitation region as cnst44 (as

offset from the carrier frequency, i.e. distance from O1P, in ppm).

l) Generate the soft pulses with ‘wvm -a’ command and execute the experiment.

8. Instructions for data processing

Data processing macro for LP of data into FID gaps, as described in main text, is given below, in SI

section 9. We recommend the following workflow:

a) All four FID-s of the same experiment, corresponding to SAPPHIRE orders 0, 0.25, 0.5 and

0.75 should be processed separately.

b) Open a dataset with a recorded chunked FID. The macro will not alter or harm the acquired

data, but it will overwrite the embedded processing parameters in the dataset. This should

not be a problem since direct processing of the FID is unlikely to give meaningful results.

However, we recommend taking note of the original processing parameters or making a

backup copy of the dataset before proceeding.

c) Execute the macro by calling the name of the Python script in the command line. If no

extrapolated data already exists (common when executing the macro for the first time for a

particular dataset), a folder missing error is displayed, which can be dismissed. The macro

will cycle though several temporary datasets during operation. We recommend not

interacting yourself with Topspin before the script has finished. If running the script on a

11

spectrometer installation, we recommend not having an active acquisition going on in the

background. The script generates a copy of the dataset in a new folder with the same

dataset name, with ‘_ekstrap’ added to the end. The expno will remain the same. This way

the original acquired data will remain untouched. FT with generic parameters will be

performed on the processed dataset, once the script is finished.

d) The resulting continuous FID can be processed by usual means. However, they represent

single SAPPHIRE experiments with chunking artefacts.

e) In order to cancel artefacts, all four processed FID-s need to be added. The easiest way to do

this is by using the addfid command of Topspin (consult Topspin manuals, FID-s to be added

can be defined with edc2 command).

f) The resulting FID should be processed as a regular 1D experiment. We used zero filling to

32k points and no window functions. Final processing can also be performed with

MestreNova, but in this case the FID needs to be circular shifted by the group delay before

FT in Mestrenova, otherwise extreme frequency dependent phase errors will be displayed in

spectrum. Enter the value of Bruker parameter GRPDLY into the requested circular shift field

in the FT shift popup window in MestreNova. This is a byproduct of the way the script is

implemented: the script removes the Bruker Digital filter group delay from the beginning of

the FID. These datapoints contain no meaningful data and, in principle, can be safely

removed. However, this causes a mismatch with the way that the group delay is handled in

MestreNova, requiring circular shifting the FID.

9. Pulse sequence

The following code should be copied into a file in the Topspin installation directory, subdirectory

/exp/stan/nmr/lists/pp/user/

;IR_1D_PS_LP
;01/06/2021
;
;Avance III Version
;Topspin3.x
;
;$CLASS=HighRes
;$DIM=1D
;$TYPE=PS
;$SUBTYPE=
;$COMMENT=
;
;National Institute of Chemical Physics and Biophysics, Tallinn, Estonia
;
;1D band-selective Pure Shift experiment that produces a discontinuous FID
;that should be processed with the attached linear prediction (LP) script.
;
;Code developed and tested on TopSpin3.5pl6 running on a Bruker Avance III
;spectrometer. The authors make no promises about compatibility with different
;TopSpin versions. Code contains WaveMaker definitions and soft pulses can be

12

;generated with WaveMaker. Generating soft pulses by other means should work too.
;
;The authors take no responsibility for any unforeseeable adverse effects on
;spectrometer hardware that may occur while experimenting with this code or its
;modifications.
;
;This code and related work by the authors is based on the following publications:
;(1) P. Kiraly, M. Nilsson and G. A. Morris, J. Magn. Reson., 2018, 293, 19–27.
;(2) P. Moutzouri, Y. Chen, M. Foroozandeh, P. Kiraly, A. R. Phillips, S. R.
; Coombes, M. Nilsson and G. A. Morris, Chem. Commun., 2017, 53, 10188–10191.
;
;The code is published as part of the following publication:
; K. K. Kaup, L. Toom, L. Truu, S. Miller, M. Puurand, K. Tepp, T. Kaambre,
; I. Reile, “A line-broadening free real-time 31P Pure Shift NMR method for
; phosphometabolomic analysis”, Analyst, 2021.

#include <Avance.incl>
#include <Grad.incl>
#include <Delay.incl>
#include <De.incl>

dwellmode explicit

"p17=300u"
"d17=100u"
"p2=2*p1"

"l20=cnst20%8"

if (l20 == 0)
 {
 "cnst35 = cnst20"; [s]
 }

if (l20 != 0)
 {
 "cnst35 = cnst20 - l20 + 8"; [s]
 }

;Length of refocusing block (gap)
"d54=2*p17+2*d17+p22"; [s]

;Temporal length of the refocusing block's full points
"cnst54=trunc(d54*1000000,dw)/1000000";[s]

;Number of full points in the refocusing block
"cnst21=cnst54*1000000/dw"; [points]

"l21=(cnst21)%16"

;Compensation delay to make the block/gap fit into an integer number of

13

;points, to be used before and after acquire-refocus block.
;Forces d56 to be even number.
if (l21 == 0)
 {
 "d55 = 0"; [s]
 }

if (l21 != 0)
 {
 "cnst22 = cnst21 - l21"
 "d55 = ((cnst22 + 16)*dw - d54)/2 "; [s]
 }

;Actual length of "blank" space between data chunks
"d56=d54+2*d55"; [s]

;Length of FID data chunks to be recorded; to be defined in points
"d62=cnst35*dw"; [s]

;Length of the first data chunk
"d61=cnst35*dw/2"; [s]

;delays for SAPPHIRE
"d18 = larger(d62/4 - cnst47*d62/2,0)"
"d19 = larger(- d62/4 + cnst47*d62/2,0)"
"d31 = (7/8-cnst47)*d56/2"
"d47 = d62/4 - abs(d18-d19)"
"d63=d62 + (7/8-cnst47)*d56 - cnst47*d62"; [s]

;Number of FID data chunks to be recorded
"l0=aq/(d54+2*d55+d62)"

;Number of loops to be completed in pulse program
"l1=l0-1"

"acqt0=0"
baseopt_echo

1 ze
 30m pl12:f2
2 30m do:f2 rpp4
 50u cpd2:f2 BLKGRAD
 d1
 20u pl1:f1
 p1 ph1
;First PFGSE
 d31
 d18 UNBLKGRAD
 p16:gp1
 d16

14

 p2 ph2
 p16:gp1
 d16
 d18
 d31
;Second PFGSE, selects the active spins
 d47
 p16:gp2
 d16 pl0:f1
 (p12:sp12 ph3)
 p16:gp2
 d16 pl1:f1
 d47
;Third PFGSE
 d19
 p16:gp3
 d16
 p2 ph5
 p16:gp3
 d16 pl0:f1 BLKGRAD
 d19

; Real time acquisition
ACQ_START(ph30,ph31)

;Acquire first chunk (half the duration of following chunks)
 0.1u REC_UNBLK
 0.05u DWL_CLK_ON
 d63
;First passive spin refocusing block
 d55 REC_BLK
 p17:gp4
 d17 pl0:f1
 (p22:sp22 ph4+ph10)
 p17:gp4*-1.0
 d17 ipp10
 d55
;Looping acquisition of full chunks, followed by passive spin refocusing
3 d62 REC_UNBLK
 d55 REC_BLK
 p17:gp4
 d17
 (p22:sp22 ph4+ph10)
 p17:gp4*-1.0
 d17 ipp10
 d55
lo to 3 times l1

 0.1u REC_UNBLK
 d61
 d62

15

 0.1u REC_BLK
 DWL_CLK_OFF

 rcyc=2
 30m do:f2 pl12:f2 mc #0 to 2 F0(zd)

 exit

ph1=0 0 0 0 1 1 1 1
ph2=0 0 1 1
ph3=0 1
ph4=0 0 1 1 0 0 1 1
ph10= (24) 0 7 20 17 20 7 0 0 7 20 17 20 7 0 12 19 32 29 32 19 12 12 19 32 29 32 19 12
ph5=0
ph29=0
ph30=0
ph31=0 2 2 0 3 1 1 3

;WAVEMAKER DEFINITIONS
;sp12:wvm: rsnob(cnst31 ppm, cnst32 ppm) rsnob(cnst33 ppm, cnst34 ppm) ofs = 0.0 ppm np=2000
;sp22:wvm: rsnob(cnst41 ppm, cnst42 ppm) rsnob(cnst43 ppm, cnst44 ppm) ofs = 0.0 ppm np=2000

;POWER LEVELS
;pl0 : zero power [O W]
;pl1 : power level for 31P hard pulse
;pl12 : f2 channel - power level for 1H decoupling

;PULSES
;p1 : hard 90 deg pulse (high power)
;p2 : hard 180 deg pulse
;p12 : 180 deg soft pulse for active spins (low power)
;p22 : 180 deg soft pulse for passive spins (low power)
;p16 : homospoil/gradient pulses during initial pulse sequence [1000 us]
;p17 : homospoil/gradient pulses during real time acquisition [300 us]

;DELAYS
;d1 : relaxation delay; 1-5 * T1
;d62 : length of full chunk : = aq/l0 [< 20-25 msec]
;d63 : length of first/half chunk : = d62/2
;d16 : recovery delay for gradients during initial pulse sequence [300us]
;d17 : recovery delay for bipolar gradient pulses during real time acquisition [100us]
;d18 : SAPPHIRE delay tau_2
;d19 : SAPPHIRE delay tau_4
;d31 : delay tau_1
;d47 : SAPPHIRE delay tau_3

;SHAPED PULSES
;sp12 shaped pulse power level for 180 selective pulse on active spins
;sp22 shaped pulse power level for 180 selective pulse on passive spins
;spnam12: shaped pulse for selective refocusing of active spins [RSnob]
;spnam22: shaped pulse for selective refocusing of passive spins [RSnob]

16

;GRADIENTS
;gpz1: gradient for the initial hard 180 pulse
;gpz2: gradient for 180deg selective pulse on active spins
;gpz3: gradient for the second hard 180 pulse
;gpz4: gradient for selective passive spin refocusing [8%]
;gpnam1: SINE.100
;gpnam2: SINE.100
;gpnam3: SINE.100
;gpnam4: SINE.100

;OTHERS
;NS: 1 * n
;DS: 2
;l0 : number of chunks acquired during acquisition time
;cnst20 : length of d62 (full chunk) in points
;cnst47 : SAPPHIRE order constant [values < 1, usually 0; 0.25; 0.5; 0.75]
;DIGMOD: baseopt
;cnst31 : bandwith for active spins refocussing soft pulse, in ppm
;cnst33 : bandwith for second active spins refocussing soft pulse, in ppm
;cnst41 : bandwith for passive spins refocussing soft pulse, in ppm
;cnst43 : bandwith for second passive spins refocussing soft pulse, in ppm
;cnst32 : offset for active spins refocussing soft pulse, in ppm from carrier frequency
;cnst34 : offset for second active spins refocussing soft pulse, in ppm from carrier frequency
;cnst42 : offset for passive spins refocussing soft pulse, in ppm from carrier frequency
;cnst44 : offset for second passive spins refocussing soft pulse, in ppm from carrier frequency

10. Data processing script

The following text should be copied into a file (i.e. PS_LP.py) in Topspin installation directory,

subdirectory /exp/stan/nmr/py/user/

The script can be run from Topspin command line by calling its name (i.e. PS_LP.py).

Below are also two additional AU macros (PS_del_tempdata and PS_del_existdata; see Section 11

below) that are used to delete existing extrapolated data for correct calculation. These AU macros

should be copied into two files with the aforementioned names in Topspin installation directory,

subdirectory /exp/stan/nmr/au/src/user/.

"""

Data processing python script for extrapolating information from

chunked Pure Shift FID chunks into the preceding and following

gaps by linear prediction.

Code originally published as

K. K. Kaup, L. Toom, L. Truu, S. Miller, M. Puurand, K. Tepp,

17

T. Kaambre, I. Reile, “A line-broadening free real-time 31P Pure

Shift NMR method for phosphometabolomic analysis”, Analyst, 2021.

This code should be copied to a file (i.e. PS_LP.py) in Topspin

installation directory, subdirectory /exp/stan/nmr/py/user/

Script can be run from Topspin command line by calling its

name (i.e. PS_LP.py).

"""

import time

"""

Following shifts the group delay

"""

XCMD("xau PS_del_existdata")

time.sleep(3)

#Get the necessary parameters for group delay eradication

grpdly = 2*float(GETPARSTAT("GRPDLY"))

dataset0 = CURDATA()

td_base = int(GETPARSTAT("TD"))

#Get necessary parameters for interpolation later on

#Get parameters to find the lengths of chunks and break between

chunk

DW = float(GETPARSTAT("DW"))/1000000

CNST = GETPARSTAT("CNST")

CNST = CNST.split()

CNST35 = float(CNST[35])

DELAYS = GETPARSTAT("D")

DELAYS = DELAYS.split()

d54 = float(DELAYS[54])

d55 = float(DELAYS[55])

d56 = float(DELAYS[56])

d63 = float(DELAYS[63])

d62 = float(DELAYS[62])

#Preparation for TRF to give FID as processed data for further

processing

PUTPAR("FT_mod", "no")

PUTPAR("WDW", "no")

PUTPAR("BC_mod", "no")

PUTPAR("ME_mod", "no")

PUTPAR("PH_mod", "no")

18

#Copying the dataset for later

WR(["temp_grpdly", dataset0[1], "733435" , dataset0[3]])

WR(["temp_grpdly", dataset0[1], "1337" , dataset0[3]])

#Cutting the group delay out and circular shifting it into the end

rec_corr = 8

PUTPAR("TDeff", str(grpdly + rec_corr))

shift_grpdly = float(td_base) - float(grpdly)

PUTPAR("SI", str(td_base/2))

TRF()

PUTPAR("NSP", str(grpdly))

XCMD("LS")

#Read the data as a list for processing

grpdly_cs = GETPROCDATA(-500,500)

grpdly_csi = GETPROCDATA(-500,500,type = dataconst.PROCDATA_IMAG)

#Open one of the copies to get the original data. Then we shift it

so that the FID starts without the group delay.

RE(["temp_grpdly", dataset0[1], "733435" , dataset0[3]])

PUTPAR("TDeff", "0")

PUTPAR("SI", str(td_base/2))

TRF()

PUTPAR("NSP", str(grpdly))

XCMD("LS")

data_cs = GETPROCDATA(-500,500)

data_csi = GETPROCDATA(-500,500,type = dataconst.PROCDATA_IMAG)

#Open another file where we store our new group-delay-less FID.

RE(["temp_grpdly", dataset0[1], "1337" , dataset0[3]])

SAVE_ARRAY_AS_1R1I(data_cs, data_csi)

#Copy the FID from processed data into another new dataset's raw

data

GENFID("88282832")

time.sleep(1)

RE(["temp_grpdly", "88282832", "1" , dataset0[3]])

"""

Following makes the chunked FID into separate chunks, forward

predicts them and puts them together.

"""

dataset = CURDATA()

19

WR(["temp_FIDadd", dataset[1], "1" , dataset[3]])

RE(["temp_FIDadd", dataset[1], "1" , dataset[3]])

TD = GETPARSTAT("TD")

TD = int(TD)

#Set parameters for trf

PUTPAR("PKNL", "FALSE")

PUTPAR("FT_mod", "no")

PUTPAR("WDW", "no")

PUTPAR("BC_mod", "no")

PUTPAR("PH_mod", "no")

PUTPAR("NCOEF", str(1000))

#Creating separate datasets for all the chunks in the original FID

chunks = 1

WR(["temp_FIDadd", "123", "49" , dataset[3]])

#Because the first chunk is different size, we do the procedure on

it separately. In the end we read the forward predicted data into

lists.

rec_corr = 8

PUTPAR("NSP",str(rec_corr))

PUTPAR("DATMOD", "raw")

PUTPAR("TDoff", str((0)))

XCMD("LS")

PUTPAR("TDeff", str((d63)/DW - 2*rec_corr))

PUTPAR("LPBIN", str((d63 + d56/2)/DW - rec_corr))

PUTPAR("ME_mod", "LPfc")

PUTPAR("SI", str(td_base/2))

TRFP()

data_r = GETPROCDATA(-500,500)

data_i = GETPROCDATA(-500,500,type = dataconst.PROCDATA_IMAG)

chunks = 0

#Loop for doing the whole procedure for every chunk.

while ((d63 + d54) + (d54*(chunks+1)) + (d62*(chunks+1))) / DW <

TD:

 RE(["temp_FIDadd", "123", "49" , dataset[3]])

 WR(["temp_FIDadd", dataset[1], str(chunks + 2) , dataset[3]])

20

 RE(["temp_FIDadd", dataset[1], str(chunks + 2) , dataset[3]])

 PUTPAR("TDeff", str((d62)/DW - 2*rec_corr))

 LPbfc = int(((d56/2) / DW) + (d62/DW) - rec_corr)

 shiftvalue = ((d54 / DW) + (d63/DW)) + (2*d55/DW) + ((d54 /

DW)*float(chunks)) + (d62/DW)*float(chunks) +

(2*d55/DW)*float(chunks) + rec_corr

 PUTPAR("NSP",str(shiftvalue))

 PUTPAR("DATMOD", "raw")

 PUTPAR("TDoff", str((0)))

 XCMD("LS")

 PUTPAR("DATMOD", "proc")

 PUTPAR("ME_mod", "LPfc")

 PUTPAR("LPBIN", str(LPbfc))

 TRFP()

 PUTPAR("ME_mod", "LPbc")

 LPbbc = (d62)/DW - 2*rec_corr

 PUTPAR("LPBIN", str(LPbbc))

 PUTPAR("TDeff", str((LPbfc)))

 TDoff = -d56/(2*DW) - rec_corr

 PUTPAR("TDoff", str((TDoff)))

 TRFP()

 PUTPAR("TDoff", str((0)))

 backshiftvalue = ((d56/(2*DW)) + (d63/DW)) + ((d54 /

DW)*float(chunks)) + (d62/DW)*float(chunks) +

(2*d55/DW)*float(chunks) - rec_corr

 PUTPAR("NSP", str(backshiftvalue))

 XCMD("RS")

 chunks += 1

 data_r2 = GETPROCDATA(-500,500)

 data_i2 = GETPROCDATA(-500,500,type = dataconst.PROCDATA_IMAG)

 data_r = [x + y for x, y in zip(data_r, data_r2)]

 data_i = [x + y for x, y in zip(data_i, data_i2)]

 if (d63+d54)/DW + chunks * ((d62 + d54)/DW) > (TD - ((d62 +

d54)/DW)):

 chunks += 1

 RE(["temp_FIDadd", "123", "49" , dataset[3]])

 WR(["temp_FIDadd", dataset[1], str(chunks + 2) ,

dataset[3]])

 RE(["temp_FIDadd", dataset[1], str(chunks + 2) ,

dataset[3]])

 PUTPAR("TDeff", str((d63)/DW- 2*rec_corr))

 LPbfc = (d56/2 / DW) + (d63/DW) - rec_corr

 shiftvalue = ((d54 / DW) + (d63/DW)) + (2*d55/DW) + ((d54

/ DW)*float(chunks)) + (d62/DW)*float(chunks) +

(2*d55/DW)*float(chunks) + rec_corr

 PUTPAR("NSP",str(shiftvalue))

 PUTPAR("DATMOD", "raw")

 XCMD("LS")

 PUTPAR("ME_mod", "LPfc")

 PUTPAR("LPBIN", str(LPbfc))

 TRFP()

 PUTPAR("ME_mod", "LPbc")

 LPbbc = (d63/DW) - 2*rec_corr

 PUTPAR("LPBIN", str(LPbbc))

 PUTPAR("TDeff", str((LPbfc)))

 TDoff = -d56/(2*DW) - rec_corr

21

 PUTPAR("TDoff", str((TDoff)))

 TRFP()

 PUTPAR("TDoff", str((0)))

 PUTPAR("DATMOD", "proc")

 backshiftvalue = ((d56/2 / DW) + (d63/DW)) + ((d54 /

DW)*float(chunks)) + (d62/DW)*float(chunks) +

(2*d55/DW)*float(chunks)

 PUTPAR("NSP",str(backshiftvalue))

 XCMD("RS")

 data_r2 = GETPROCDATA(-500,500)

 data_i2 = GETPROCDATA(-500,500,type =

dataconst.PROCDATA_IMAG)

 data_r = [x + y for x, y in zip(data_r, data_r2)]

 data_i = [x + y for x, y in zip(data_i, data_i2)]

#Writing the data together and then storing it in a FID

WR([dataset0[0] + "_ekstrap", "88282832", "1337" , dataset0[3]])

RE([dataset0[0] + "_ekstrap", "88282832", "1337" , dataset0[3]])

SAVE_ARRAY_AS_1R1I(data_r, data_i)

PUTPAR("TDeff", "0")

TRFP()

PUTPAR("NSP", str(float(rec_corr)))

XCMD("RS")

data_r3 = GETPROCDATA(-500,500)

data_i3 = GETPROCDATA(-500,500,type = dataconst.PROCDATA_IMAG)

data_grpdly_r = [x + y for x, y in zip(grpdly_cs, data_r3)]

data_grpdly_i = [x + y for x, y in zip(grpdly_csi, data_i3)]

SAVE_ARRAY_AS_1R1I(data_grpdly_r, data_grpdly_i)

PUTPAR("DATMOD", "proc")

PUTPAR("TDeff", str(TD))

GENFID(dataset0[1])

time.sleep(1)

RE([dataset0[0] + "_ekstrap", dataset0[1], "1" , dataset0[3]])

PUTPAR("SI", str(2*TD))

PUTPAR("WDW", "EM")

PUTPAR("PH_mod", "pk")

PUTPAR("BC_mod", "quad")

PUTPAR("FT_mod", "fqc")

XCMD("xau PS_del_tempdata")

11. Additional au macros

PS_del_tempdata code:

GETCURDATA

DELETEEXPNO(name, 88282832 , disk, user);

22

DELETENAME("temp_FIDadd", disk, user);

DELETENAME("temp_grpdly", disk, user);

QUIT

PS_del_exisdata code:

GETCURDATA

DELETEEXPNO(strcat(name, "_ekstrap"), expno , disk, user);

QUIT

