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1. Reagents, chemicals and experimental conditions 
 

All standard substances (ATP, CTP, UTP) were bought from Sigma Aldrich. D2O and H2
18O were 

received as a donation from Cambridge Laboratories, Inc. Solutions were prepared gravimetrically 

whenever feasible. pH of all solutions was carefully adjusted before NMR measurements. NMR 

measurements were conducted either in good quality 5 mm NMR tubes or Shigemi tubes. 

All NMR experiments were run on the 700 MHz Bruker Avance III spectrometer, located in the 

Institute of Chemistry of the University of Tartu. 31P NMR was carried out with a BBO probe at 6 ˚C 

sample temperature. All samples were allowed to temperature equilibrate for 15 min in the probe 

before analysis. The probe was tuned and matched for every sample and the 90˚ pulse for 31P was 

calibrated. The 90˚ pulse for 31P was found to be between 14.7-14.9 µs for all samples. Soft pulses 

for active and passive spin refocusing were 4.080 ms long RSnob pulses, corresponding to approx. 

450 Hz bandwidth. The soft pulse bandwidth has to be selected so that all targeted spins (i.e. active 

spins) experience a uniform rotation, while untargeted spins (i.e. passive spins) are not perturbed. 

This is an important consideration when choosing the passive spin refocusing pulse, since this is 

pulse is applied for ~40 times. Any errors from this pulse would lead to imperfect refocusing during 

consecutive data chunks. Small imperfections can be alleviated by applying a supercycle to the 

passive spin refocusing pulse, but this will not resolve larger errors, which will eventually lead to 

faster FID decay and more artefacts. 

The pulse program herein was developed and run in Bruker Topspin 3.5pl6 software. The authors 

expect the code to run on other versions of Topspin 3.x, however this has not been tested. The 

present implementation relies on Bruker Wavemaker macro for optimization of soft pulses. This 

macro is not included by default starting from Topspin 3.5pl6. However, soft pulses can be optimized 

by other means (i.e. Shapetool), if Wavemaker is not available. 

The presented data processing macro was developed in Bruker Topspin 3.5pl6 and has also been 

tested in Topspin 3.6.2. Detailed instructions for applying the code are given below.  

The authors are publishing the pulse program and macro codes without any warranties. We have 

successfully recorded the presented spectra with these programs, but we take no responsibility for 

potential adverse effects on other users’ instrumentation when implementing this method. 

 

2. Rat heart perfusion experiment for 18O labelling of ATP 
 

Wistar line male adult rats 300-400g were anaesthetized by intraperitoneal injection of ketamine (75 

mg/kg) and dexmedetomidin (1 mg/kg); the blood was protected against coagulation by injection of 

heparin. The heart was quickly excised preserving a part of aorta and placed in an aerated perfusion 

solution, modified Krebs medium, with the following composition: 118 mM NaCl, 5.3 mM KCl, 1.2 

mM MgSO4, 0.5 mM EDTA, 25 mM NaHCO3, 11 mM Glucose, and 2 mM CaCl2 (pH 7.4). The heart was 

cannulated via aorta (Langendorf system) and perfused with the solution with a flow rate of 15 

ml/min during 5 minutes. Then the heart was perfused for 10 minutes with the same solution where 

30% of the H2
16O was replaced with H2

18O. The perfusate was continuously aerated and its 

temperature was kept at 37°C. After that the heart was quickly frozen with liquid nitrogen (freeze 

clamp method) and the heart muscle was used for experiments. 
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Rats were housed under standard laboratory conditions (at 22°C constant temperature and a 12:12 

h light/dark cycle with free access to food and water). Animal experiments were approved by the 

Estonian National Board of Animal Experiments in accordance with the European Community 

Directive (86/609/EEC). 

 

NMR Sample preparation from freeze clamped heart muscle 

The heart tissue was ground in liquid nitrogen using a mortar and pestle. Then weighed and 

subjected to an extraction solution: 0.6 M HClO4, 1 mM EDTA (1 mL extraction solution per 100 mg 

tissue), stirred vigorously and kept on ice for 5 min. The mixture was neutralized (pH 7.2) with 2 M 

KH2CO3 and centrifuged at 2253 x g for 10 min, at +4 C. The supernatant was removed and treated 

with Chelex 100 sodium form with constant stirring at +4 C, overnight. The extract was 

centrifuged for 5 min 2253 x g at +4 C the supernatant was removed, frozen in liquid nitrogen and 

lyophilized. The dry residue was taken up in 300 uL of D2O, pH adjusted to 9.5 with NaOH aq and 

loaded into a Shigemi NMR tube. 

 

Purification of 18O labelled ATP from the perfused heart sample by preparative LC 

ATP was isolated from the primary NMR sample by LC (GE Healthcare ÄKTAPrime Plus), using a 

Mono Q HR 5/5 ion-exchange column (Pharmacia Biotech) with triethylammonium bicarbonate 

(TEAB) buffer pH 8.8 (gradient from 0-85%) at a 0.4 ml min-1 flow-rate. Analytes were detected with 

a UV detector fixed at 280 nm. ATP containing fractions were combined, lyophilized, reconstituted in 

300 uL of D2O, pH adjusted to 9.5 with NaOH aq and loaded into a Shigemi NMR tube. 

 

 

3. Method performance at different data chunk and gap lengths 
 

The method herein works by extrapolating the information from within the limited duration data 

chunks into the gaps in FID by linear extrapolation (LP). A certain number of datapoints has to be 

predicted, based on the limited number of data points available. In order to gauge, how many points 

can be reliably predicted from our usual gap length of 20-25 ms, the macro was tested on a 

simulated FID of a single signal. Chunk length was fixed at 21,28 ms, representing 600 points and the 

gap length was varied. It followed that if the gap is smaller than approximately a quarter of the 

chunk length, then LP does not induce additional artefacts. In other words, based on a ~20 ms (600 

points) chunk, about 5 ms of data (150 points) can be predicted. In the actual experiment we are 

only predicting half of the gap in either direction, which relives the condition further during most of 

thechunked FID. However, the 1st chunk is shorter than the later ones, posing the most critical 

boundrary condition for setting up the experiment. 

If too many points are predicted, noticeable errors from the expected FID evolution occur (Fig. S1 

displays an extreme case). Fourier transform of such FID intoduces artefacts (Fig. S2) – similar 

artefacts occur in real spectra if too many points are being predicted. In turn, if a resonable number 

of points are being predicted, good quality FID can be obtained (Fig. S3), which yields a high quality 

spectrum after FT. 
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Figure S1. Processed FID with gap length equal to chunk length at 600 points. 

 

Figure S2. Spectrum from Fourier Transform of FID from S1. 

 

Figure S3. Processed FID with gap length equal to a quarter of chunk length (150 points). 

The considerations for choosing the length of data chunks are similar to any other PS methods: it is 

limited by the fact that the slight amount of J-development during the chunk must stay negligible. 

The difference from most other PS techniques is that on top of J-evolution during data chunks, we 

need to consider evolution during the gaps: J-evolution is refocused in the middle of chunks, but 

then evolution will be further elongated by LP until the mid-point of each gap. The chunk cannot be 

too short, because linear prediction fares better there are more points to extrapolate upon. Linear 

prediction will also fare better if the gap is shorter (i.e. the ratio of chunk to gap length is bigger). 

The length of the gap should be as short as possible, but in practice, it is determined mainly by the 
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length of the soft refocusing pulse that has to uniformly rotate the targeted spins and leave others 

unperturbed. 

The method can handle data with different numbers or signals (frequencies) in the FID-s. As long as 

the number of extrapolated frequency components, set by the parameter NCOEF in TopSpin, is 

sufficiently larger than the number of expected signals, its value does not influence spectral quality. 

Consequently, the data processing macro sets NCOEF=1000, which should also handle well 

significantly more complex spectra than what is presented herein. 

 

4. SAPPHIRE implementation 
 

Chunking sidebands are relieved by using the SAPPHIRE method.1 The simplest first order SAPPHIRE 

implementation would be to shift the phase of J-modulation by half of the periodic unit. As the 

original experiment starts with J-modulation at its maximum value, then the second experiment is 

manipulated to start at minima. The length of the first chunk is also changed (in the first order case, 

doubled) accordingly. This is achieved by using multiple gradient spin echo blocks to refocus the 

chemical shift of active spins while manipulating the J-evolution as needed. These two different 

experiments cause chunking sidebands with opposite phases, cancelling out at summation (Fig. 4, 

main text). First order implementation of SAPPHIRE cancels out the first order (highest intensity) 

sidebands.  

The logic behind calculating the delays τ2 (d18 in pulse program), τ3 (d47 in pulse program) and τ4 

(d19 in pulse program) is similar to and directly derived from the original SAPPHIRE publication by 

the Morris group1: 

τ2: d18 = larger(d62/4 - cnst47*d62/2,0) 

τ3: d47 = d62/4 - abs(d18-d19) 

τ4: d19 = larger(- d62/4 + cnst47*d62/2,0) 

where d62 is the time duration of data chunks and cnst47 sets the SAPPHIRE order, which takes the 

values of 0, 0.25, 0.5 and 0.75 in present work.  SAPPHIRE order is determined by the number of 

experiments with opposite J-modulation phase. The first order case therefore consists of two 

experiments (cnst47 values 0 and 0.5), with first experiment starting with maximum J-modulation 

phase and second starting at the minimum of J-modulation, cancelling out first order artefacts. 

Higher SAPPHIRE orders double on the number of experiments from the previous order (1st order 

consists of 2 experiments, 2nd order of 4 – cnst47 values 0, 0.25, 0.5, 0.75 - and so on). Higher order 

artefacts need to be cancelled from all experiments of the previous order and to keep the first order 

artefacts cancelled, it is necessary for the added experiments to also cancel the first order artefacts 

within themselves. 

We have introduced a slight modification to the SAPPHIRE logic by adding an extra delay τ1 in the 

first PFGSE before acquisition: 

τ 1: d31 = (7/8 - cnst47)*d56/2, 

where d56 is the time duration of FID gaps. In our approach, the J-evolution maxima are not at the 

ends of the chunks (as in the original SAPPHIRE) but rather at the center of the gaps. This extra delay 

serves to account for the additional gap length - in the original SAPPHIRE sequence, the gap is 
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neglected and therefore not necessary to be accounted for. However, herein J-evolution will be 

extrapolated further until the mid-points of the gaps.  

Technically our method allows to use SAPPHIRE up to third order, but as the length of the first chunk 

goes smaller with each higher order, third order implementation requires the use of experiments 

with very short first chunk lengths which can cause rolling artefacts in the spectra (Similar to Fig. S2) 

and incorrect cancellation of chunking sidebands. That being said, in certain cases with a very short 

gap length, it might be useful to extend SAPPHIRE to third order. We have, however, limited us to 

the 2nd order in results that are presented in main text. 

 

5. Comparison of the presented method with other Pure Shift 

techniques 
 

A comparison is presented in Table S1 and graphically in Figure S4 below, followed by a brief 

description of observations. All pure shift spectra were acquired with identical data chunk lengths 

(20 ms) and acquisition times, as described in the experimental section of main text. All experiments 

in Figure S4 and Table S1 were acquired in one measurement session, with no adjustments to 

instrumental settings, once the experiment sequence was started. All FID-s were acquired in 16k 

points and zero filled to 32k points before Fourier transformation without any window functions 

applied. 

 

 

Table S1. Quantitative comparison of spectra from Figure S4. 

Pos in Fig 
S4 

Pure Shift 
Technique 

Line width, 
Hz 

Signal 
intensity 

factor 

Artefact 
intensity 

Acquisition 
time 

a Regular 1D 2,0 1,0 - 14 min 

b Real time LP 2,0 1,2 1,8% 14 min 

c Interferogram 1,9 1,4 -7,4% 9 h, 10 min 

d Real time 4,1 0,9 9,5% 14 min 
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Figure S4. Comparison of regular 1D (trace a) 31P spectrum of ATP β-phosphate with Pure Shift 

spectra required with the method presented in this work (trace b), with a pseudo-2D interferogram 

acquisition scheme (trace c) and traditional real-time acquisition (trace d).  

 

Methods a, b and c yield near-identical line shapes, the apparently narrower line shape from trace c) 

in Table S1 is the result of data rounding. As expected, the traditional real-time acquisition scheme 

introduces line broadening, whereas interferogram acquisition introduces a large increase in 

measurement time. The method herein yields good line shape and artefact suppression, while its 

signal intensity falls short of the interferogram acquisition scheme. However, we argue that this 

penalty is compensated by the difference in measurement time. 

Note that although recorded data chunk durations were equal for traces b), c) and d) in Figure S4, 

trace b) displays artefacts at a different distance from main signal. This is due to the fact that the LP 

procedure effectively increases chunk duration: the period of the artefact causing FID modulation 

will be the sum of chunk and gap durations (see main text Figure 4). 

The first sub-experiment of the semi-real time pure shift experiment (main text Ref. 23) is identical 

to the interferogram acquisition scheme in its pulse sequence, until acquisition starts. Consequently, 

the line width and signal intensity properties of the semi-real time experiment are expected to be 

similar to interferogram acquisition. Since neither include any artefact suppression techniques, we 

expect also the artefact intensities to be similar. The semi-real time approach (main text Ref. 23) has 

a sensitivity benefit, compared with the method presented in this work, but this benefit is not 

sufficient to compensate for the two-fold increase in measurement time for the ATP signals that we 

analyze in this work. 
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The SAPPHIRE (main text Ref. 20) acquisition scheme was originally demonstrated for interferogram 

acquisition, where it yielded the most artefact free pure shift spectra up to date. Up until acquisition 

starts, the pulse sequences for interferogram SAPPHIRE and the work herein are similar. 

Consequently, we expect the intensity performance to be similar to our work and acquisition time to 

be the same as for pseudo-2D interferogram acquisition. The artefact suppression performance of 

pseudo-2D-SAPPHIRE is likely to be superior compared to the method presenter in this work: 

repeated refocusing pulses during acquisition and linear prediction are both sources of additional 

errors that reduce artefact suppression performance. 

 

6. Application to a mixture of 18O-labelled ATP and ADP 

 

Figure S5. Application of the method for a mixture of ATP and ADP, acquired with 2048 scan (4x512 

scans for SAPPHIRE experiments in Pure Shift (upper trace). Note that herein, when measuring ATP-

γ, both the ADP-α and ATP-β regions need to be treated as passive spins, excluding the option to 

acquire PS spectra for ATP-α and ATP-γ simultaneously (I.e., main text, Fig. 2). 

 

7. Instructions to setting up the experiment 
 

The experiment is best set up based on an underlying 1D 31P spectrum. Acquisition time, spectral 

width, number of acquired points can be directly derived from the underlying regular 1D 

experiment. Experiment specific considerations are: 
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a) The number of acquired scans should be divided into four distinct datasets: the overall 

number of scans will remain the same, but they will be acquired in 4 distinct 1D 

experiments, and the FID will be added together after data processing. 

b) These four experiments will differ by the value of parameter cnst47, which should take 

values 0, 0.25, 0.5 and 0.75 in the for experiments. All other acquisition parameters should 

be kept to same. 

c) The FID chunk length is chosen by the operator with setting the value for cnst20. This 

parameter should be entered as the number of complex points that will make up the chunk. 

The spectrometer will calculate the time duration of the chunk and display it as d62. In 

present work, we used cnst20 = 400, corresponding to chunk length of about 20 ms. We 

recommend using even values for cnst20. 

d) The desired bandwidth for active spins refocusing pulse (in ppm, usually an RSnob pulse) is 

entered as cnst31, We used 1.6 ppm bandwidth for all soft pulses. 

e) Set the offset of the active spins refocusing pulse as cnst32 (as offset from the carrier 

frequency, i.e. distance from O1P, in ppm).  

f) If multiple active spins are targeted at once (i.e. when measuring α and γ phosphates at 

once), enter the bandwidth for the 2nd excitation region as cnst33. Otherwise set cnst33 = 0. 

g) If multiple active spins are targeted, enter the offset of the 2nd excitation region as cnst34 (as 

offset from the carrier frequency, i.e. distance from O1P, in ppm). 

h) The desired bandwidth for passive spins refocusing pulse (in ppm, usually an RSnob pulse) is 

entered as cnst41, We used 1.6 ppm bandwidth for all soft pulses. 

i) Set the offset of the active spins refocusing pulse as cnst42 (as offset from the carrier 

frequency, i.e. distance from O1P, in ppm).  

j) If multiple passive spins are targeted at once (i.e. when measuring β phosphate), enter the 

bandwidth for the 2nd excitation range as cnst43. Otherwise set cnst43 = 0. 

k) If multiple active spins are targeted, enter the offset of the 2nd excitation region as cnst44 (as 

offset from the carrier frequency, i.e. distance from O1P, in ppm). 

l) Generate the soft pulses with ‘wvm -a’ command and execute the experiment. 

 

8. Instructions for data processing 
 

Data processing macro for LP of data into FID gaps, as described in main text, is given below, in SI 

section 9. We recommend the following workflow: 

a) All four FID-s of the same experiment, corresponding to SAPPHIRE orders 0, 0.25, 0.5 and 

0.75 should be processed separately. 

b) Open a dataset with a recorded chunked FID. The macro will not alter or harm the acquired 

data, but it will overwrite the embedded processing parameters in the dataset. This should 

not be a problem since direct processing of the FID is unlikely to give meaningful results. 

However, we recommend taking note of the original processing parameters or making a 

backup copy of the dataset before proceeding. 

c) Execute the macro by calling the name of the Python script in the command line. If no 

extrapolated data already exists (common when executing the macro for the first time for a 

particular dataset), a folder missing error is displayed, which can be dismissed. The macro 

will cycle though several temporary datasets during operation. We recommend not 

interacting yourself with Topspin before the script has finished. If running the script on a 
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spectrometer installation, we recommend not having an active acquisition going on in the 

background. The script generates a copy of the dataset in a new folder with the same 

dataset name, with ‘_ekstrap’ added to the end. The expno will remain the same. This way 

the original acquired data will remain untouched. FT with generic parameters will be 

performed on the processed dataset, once the script is finished. 

d) The resulting continuous FID can be processed by usual means. However, they represent 

single SAPPHIRE experiments with chunking artefacts. 

e) In order to cancel artefacts, all four processed FID-s need to be added. The easiest way to do 

this is by using the addfid command of Topspin (consult Topspin manuals, FID-s to be added 

can be defined with edc2 command). 

f) The resulting FID should be processed as a regular 1D experiment. We used zero filling to 

32k points and no window functions. Final processing can also be performed with 

MestreNova, but in this case the FID needs to be circular shifted by the group delay before 

FT in Mestrenova, otherwise extreme frequency dependent phase errors will be displayed in 

spectrum. Enter the value of Bruker parameter GRPDLY into the requested circular shift field 

in the FT shift popup window in MestreNova. This is a byproduct of the way the script is 

implemented: the script removes the Bruker Digital filter group delay from the beginning of 

the FID. These datapoints contain no meaningful data and, in principle, can be safely 

removed. However, this causes a mismatch with the way that the group delay is handled in 

MestreNova, requiring circular shifting the FID. 

 

9. Pulse sequence 
 

The following code should be copied into a file in the Topspin installation directory, subdirectory 

/exp/stan/nmr/lists/pp/user/ 

 
;IR_1D_PS_LP 
;01/06/2021 
; 
;Avance III Version 
;Topspin3.x 
; 
;$CLASS=HighRes 
;$DIM=1D 
;$TYPE=PS 
;$SUBTYPE= 
;$COMMENT= 
; 
;National Institute of Chemical Physics and Biophysics, Tallinn, Estonia 
; 
;1D band-selective Pure Shift experiment that produces a discontinuous FID 
;that should be processed with the attached linear prediction (LP) script. 
; 
;Code developed and tested on TopSpin3.5pl6 running on a Bruker Avance III 
;spectrometer. The authors make no promises about compatibility with different 
;TopSpin versions. Code contains WaveMaker definitions and soft pulses can be 
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;generated with WaveMaker. Generating soft pulses by other means should work too. 
; 
;The authors take no responsibility for any unforeseeable adverse effects on 
;spectrometer hardware that may occur while experimenting with this code or its 
;modifications. 
; 
;This code and related work by the authors is based on the following publications: 
;(1) P. Kiraly, M. Nilsson and G. A. Morris, J. Magn. Reson., 2018, 293, 19–27. 
;(2) P. Moutzouri, Y. Chen, M. Foroozandeh, P. Kiraly, A. R. Phillips, S. R. 
;    Coombes, M. Nilsson and G. A. Morris, Chem. Commun., 2017, 53, 10188–10191. 
; 
;The code is published as part of the following publication: 
;    K. K. Kaup, L. Toom, L. Truu, S. Miller, M. Puurand, K. Tepp, T. Kaambre, 
;    I. Reile, “A line-broadening free real-time 31P Pure Shift NMR method for 
;    phosphometabolomic analysis”, Analyst, 2021. 
 
#include <Avance.incl> 
#include <Grad.incl> 
#include <Delay.incl> 
#include <De.incl> 
 
dwellmode explicit 
 
"p17=300u" 
"d17=100u" 
"p2=2*p1" 
 
"l20=cnst20%8" 
 
if (l20 == 0) 
   { 
 "cnst35 = cnst20"; [s] 
    } 
 
if (l20 != 0) 
   { 
 "cnst35 = cnst20 - l20 + 8"; [s] 
    } 
 
;Length of refocusing block (gap) 
"d54=2*p17+2*d17+p22"; [s] 
 
;Temporal length of the refocusing block's full points 
"cnst54=trunc(d54*1000000,dw)/1000000";[s] 
 
;Number of full points in the refocusing block 
"cnst21=cnst54*1000000/dw"; [points] 
 
"l21=(cnst21)%16" 
 
;Compensation delay to make the block/gap fit into an integer number of 
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;points, to be used before and after acquire-refocus block. 
;Forces d56 to be even number. 
if (l21 == 0) 
   { 
 "d55 = 0"; [s] 
    } 
 
if (l21 != 0) 
   { 
 "cnst22 = cnst21 - l21" 
 "d55 = ( (cnst22 + 16)*dw - d54)/2 "; [s] 
    } 
 
;Actual length of "blank" space between data chunks 
"d56=d54+2*d55"; [s] 
 
;Length of FID data chunks to be recorded; to be defined in points 
"d62=cnst35*dw"; [s] 
 
;Length of the first data chunk 
"d61=cnst35*dw/2"; [s] 
 
;delays for SAPPHIRE 
"d18 = larger(d62/4 - cnst47*d62/2,0)" 
"d19 = larger(- d62/4 + cnst47*d62/2,0)" 
"d31 = (7/8-cnst47)*d56/2" 
"d47 = d62/4 - abs(d18-d19)" 
"d63=d62 + (7/8-cnst47)*d56 - cnst47*d62"; [s] 
 
;Number of FID data chunks to be recorded 
"l0=aq/(d54+2*d55+d62)" 
 
;Number of loops to be completed in pulse program 
"l1=l0-1" 
 
"acqt0=0" 
baseopt_echo 
 
 
1 ze 
  30m pl12:f2 
2 30m do:f2 rpp4 
  50u cpd2:f2 BLKGRAD 
  d1 
  20u pl1:f1 
  p1 ph1 
;First PFGSE 
  d31 
  d18 UNBLKGRAD 
  p16:gp1 
  d16 
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  p2 ph2 
  p16:gp1 
  d16 
  d18 
  d31 
;Second PFGSE, selects the active spins 
  d47 
  p16:gp2 
  d16 pl0:f1 
  (p12:sp12 ph3) 
  p16:gp2 
  d16 pl1:f1 
  d47 
;Third PFGSE 
  d19 
  p16:gp3 
  d16 
  p2 ph5 
  p16:gp3 
  d16 pl0:f1 BLKGRAD 
  d19 
 
; Real time acquisition 
ACQ_START(ph30,ph31) 
 
;Acquire first chunk (half the duration of following chunks) 
  0.1u REC_UNBLK 
  0.05u DWL_CLK_ON 
  d63 
;First passive spin refocusing block 
  d55 REC_BLK 
  p17:gp4 
  d17 pl0:f1 
  (p22:sp22 ph4+ph10) 
  p17:gp4*-1.0 
  d17 ipp10 
  d55 
;Looping acquisition of full chunks, followed by passive spin refocusing 
3 d62 REC_UNBLK 
  d55 REC_BLK 
  p17:gp4 
  d17 
  (p22:sp22 ph4+ph10) 
  p17:gp4*-1.0 
  d17 ipp10 
  d55 
lo to 3 times l1 
 
  0.1u REC_UNBLK 
  d61 
  d62 
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  0.1u REC_BLK 
  DWL_CLK_OFF 
 
  rcyc=2 
  30m do:f2 pl12:f2 mc #0 to 2 F0(zd) 
 
  exit 
 
ph1=0 0 0 0  1 1 1 1 
ph2=0 0 1 1 
ph3=0 1 
ph4=0 0 1 1  0 0 1 1 
ph10= (24) 0 7 20 17 20 7 0  0 7 20 17 20 7 0  12 19 32 29 32 19 12  12 19 32 29 32 19 12 
ph5=0 
ph29=0 
ph30=0 
ph31=0 2 2 0 3 1 1 3 
 
;WAVEMAKER DEFINITIONS 
;sp12:wvm: rsnob(cnst31 ppm, cnst32 ppm) rsnob(cnst33 ppm, cnst34 ppm) ofs = 0.0 ppm np=2000 
;sp22:wvm: rsnob(cnst41 ppm, cnst42 ppm) rsnob(cnst43 ppm, cnst44 ppm) ofs = 0.0 ppm np=2000 
 
;POWER LEVELS 
;pl0 : zero power [O W] 
;pl1 : power level for 31P hard pulse 
;pl12 : f2 channel - power level for 1H decoupling 
 
;PULSES 
;p1  : hard 90 deg pulse (high power) 
;p2  : hard 180 deg pulse 
;p12 : 180 deg soft pulse for active spins (low power) 
;p22 : 180 deg soft pulse for passive spins (low power) 
;p16 : homospoil/gradient pulses during initial pulse sequence [1000 us] 
;p17 : homospoil/gradient pulses during real time acquisition [300 us] 
 
;DELAYS 
;d1 :  relaxation delay; 1-5 * T1 
;d62 : length of full chunk : = aq/l0 [< 20-25 msec] 
;d63 : length of first/half chunk : = d62/2 
;d16 : recovery delay for gradients during initial pulse sequence [300us] 
;d17 : recovery delay for bipolar gradient pulses during real time acquisition [100us] 
;d18 : SAPPHIRE delay tau_2 
;d19 : SAPPHIRE delay tau_4 
;d31 : delay tau_1 
;d47 : SAPPHIRE delay tau_3 
 
;SHAPED PULSES 
;sp12 shaped pulse power level for 180 selective pulse on active spins 
;sp22 shaped pulse power level for 180 selective pulse on passive spins 
;spnam12: shaped pulse for selective refocusing of active spins [RSnob] 
;spnam22: shaped pulse for selective refocusing of passive spins [RSnob] 
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;GRADIENTS 
;gpz1: gradient for the initial hard 180 pulse 
;gpz2: gradient for 180deg selective pulse on active spins 
;gpz3: gradient for the second hard 180 pulse 
;gpz4: gradient for selective passive spin refocusing [8%] 
;gpnam1: SINE.100 
;gpnam2: SINE.100 
;gpnam3: SINE.100 
;gpnam4: SINE.100 
 
;OTHERS 
;NS: 1 * n 
;DS: 2 
;l0 : number of chunks acquired during acquisition time 
;cnst20 : length of d62 (full chunk) in points 
;cnst47 : SAPPHIRE order constant [values < 1, usually 0; 0.25; 0.5; 0.75] 
;DIGMOD: baseopt 
;cnst31 : bandwith for active spins refocussing soft pulse, in ppm 
;cnst33 : bandwith for second active spins refocussing soft pulse, in ppm 
;cnst41 : bandwith for passive spins refocussing soft pulse, in ppm 
;cnst43 : bandwith for second passive spins refocussing soft pulse, in ppm 
;cnst32 : offset for active spins refocussing soft pulse, in ppm from carrier frequency 
;cnst34 : offset for second active spins refocussing soft pulse, in ppm from carrier frequency 
;cnst42 : offset for passive spins refocussing soft pulse, in ppm from carrier frequency 
;cnst44 : offset for second passive spins refocussing soft pulse, in ppm from carrier frequency 

 
 
 

10. Data processing script 
 

The following text should be copied into a file (i.e. PS_LP.py) in Topspin installation directory, 

subdirectory /exp/stan/nmr/py/user/ 

The script can be run from Topspin command line by calling its name (i.e. PS_LP.py). 

Below are also two additional AU macros (PS_del_tempdata and PS_del_existdata; see Section 11 

below) that are used to delete existing extrapolated data for correct calculation. These AU macros 

should be copied into two files with the aforementioned names in Topspin installation directory, 

subdirectory /exp/stan/nmr/au/src/user/. 

 

"""  

Data processing python script for extrapolating information from  

chunked Pure Shift FID chunks into the preceding and following 

gaps by linear prediction. 

Code originally published as 

K. K. Kaup, L. Toom, L. Truu, S. Miller, M. Puurand, K. Tepp, 



17 
 

T. Kaambre, I. Reile, “A line-broadening free real-time 31P Pure 

Shift NMR method for phosphometabolomic analysis”, Analyst, 2021. 

This code should be copied to a file (i.e. PS_LP.py) in Topspin 

installation directory, subdirectory /exp/stan/nmr/py/user/ 

Script can be run from Topspin command line by calling its 

name (i.e. PS_LP.py). 

""" 

import time 

 

"""  

 

Following shifts the group delay 

 

""" 

 

XCMD("xau PS_del_existdata") 

time.sleep(3) 

 

#Get the necessary parameters for group delay eradication 

grpdly = 2*float(GETPARSTAT("GRPDLY")) 

dataset0 = CURDATA() 

td_base = int(GETPARSTAT("TD")) 

 

 

 

#Get necessary parameters for interpolation later on 

#Get parameters to find the lengths of chunks and break between 

chunk 

DW = float(GETPARSTAT("DW"))/1000000  

 

CNST = GETPARSTAT("CNST") 

CNST = CNST.split() 

CNST35 = float(CNST[35]) 

   

DELAYS = GETPARSTAT("D") 

DELAYS = DELAYS.split() 

d54 = float(DELAYS[54])  

d55 = float(DELAYS[55]) 

d56 = float(DELAYS[56]) 

d63 = float(DELAYS[63]) 

d62 = float(DELAYS[62]) 

 

 

 

#Preparation for TRF to give FID as processed data for further 

processing 

PUTPAR("FT_mod", "no") 

PUTPAR("WDW", "no") 

PUTPAR("BC_mod", "no") 

PUTPAR("ME_mod", "no") 

PUTPAR("PH_mod", "no") 
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#Copying the dataset for later 

WR(["temp_grpdly", dataset0[1], "733435"  , dataset0[3]]) 

WR(["temp_grpdly", dataset0[1], "1337"  , dataset0[3]]) 

 

#Cutting the group delay out and circular shifting it into the end 

 

rec_corr = 8 

 

PUTPAR("TDeff", str(grpdly + rec_corr)) 

shift_grpdly = float(td_base) - float(grpdly) 

PUTPAR("SI", str(td_base/2)) 

TRF() 

PUTPAR("NSP", str(grpdly)) 

XCMD("LS") 

#Read the data as a list for processing 

grpdly_cs = GETPROCDATA(-500,500)  

grpdly_csi = GETPROCDATA(-500,500,type = dataconst.PROCDATA_IMAG )  

 

 

 

#Open one of the copies to get the original data. Then we shift it 

so that the FID starts without the group delay. 

RE(["temp_grpdly", dataset0[1], "733435" , dataset0[3]]) 

PUTPAR("TDeff", "0") 

PUTPAR("SI", str(td_base/2)) 

TRF() 

PUTPAR("NSP", str(grpdly)) 

XCMD("LS") 

data_cs = GETPROCDATA(-500,500) 

data_csi = GETPROCDATA(-500,500,type = dataconst.PROCDATA_IMAG )  

 

 

  

 

#Open another file where we store our new group-delay-less FID. 

RE(["temp_grpdly", dataset0[1], "1337"  , dataset0[3]]) 

SAVE_ARRAY_AS_1R1I(data_cs, data_csi) 

 

 

#Copy the FID from processed data into another new dataset's raw 

data 

GENFID("88282832") 

time.sleep(1) 

RE(["temp_grpdly", "88282832", "1" , dataset0[3]]) 

 

""" 

 

Following makes the chunked FID into separate chunks, forward 

predicts them and puts them together. 

 

""" 

 

 

dataset = CURDATA() 
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WR(["temp_FIDadd", dataset[1], "1"  , dataset[3]]) 

RE(["temp_FIDadd", dataset[1], "1"  , dataset[3]]) 

 

 

TD = GETPARSTAT("TD") 

TD = int(TD) 

 

#Set parameters for trf 

PUTPAR("PKNL", "FALSE") 

PUTPAR("FT_mod", "no") 

PUTPAR("WDW", "no") 

PUTPAR("BC_mod", "no") 

PUTPAR("PH_mod", "no") 

PUTPAR("NCOEF", str(1000)) 

 

 

 

 

 

 

 

 

 

#Creating separate datasets for all the chunks in the original FID 

chunks = 1 

 

WR(["temp_FIDadd", "123", "49"  , dataset[3]]) 

 

 

 

#Because the first chunk is different size, we do the procedure on 

it separately. In the end we read the forward predicted data into 

lists. 

 

rec_corr = 8 

PUTPAR("NSP",str(rec_corr)) 

PUTPAR("DATMOD", "raw") 

PUTPAR("TDoff", str((0))) 

XCMD("LS") 

 

PUTPAR("TDeff", str((d63)/DW - 2*rec_corr)) 

PUTPAR("LPBIN", str((d63 + d56/2)/DW - rec_corr))  

PUTPAR("ME_mod", "LPfc") 

PUTPAR("SI", str(td_base/2)) 

TRFP() 

data_r = GETPROCDATA(-500,500) 

data_i = GETPROCDATA(-500,500,type = dataconst.PROCDATA_IMAG) 

 

chunks = 0 

 

 

#Loop for doing the whole procedure for every chunk. 

while ( (d63 + d54) + (d54*(chunks+1))  + (d62*(chunks+1)) ) / DW < 

TD: 

 RE(["temp_FIDadd", "123", "49"  , dataset[3]]) 

 WR(["temp_FIDadd", dataset[1], str(chunks + 2)  , dataset[3]]) 
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 RE(["temp_FIDadd", dataset[1], str(chunks + 2)  , dataset[3]]) 

 PUTPAR("TDeff", str((d62)/DW - 2*rec_corr)) 

 LPbfc = int(( (d56/2) / DW) + (d62/DW) - rec_corr) 

 shiftvalue = ((d54 / DW) + (d63/DW)) + (2*d55/DW) + ((d54 / 

DW)*float(chunks)) + (d62/DW)*float(chunks) + 

(2*d55/DW)*float(chunks) + rec_corr 

 PUTPAR("NSP",str(shiftvalue)) 

 PUTPAR("DATMOD", "raw") 

 PUTPAR("TDoff", str((0))) 

 XCMD("LS") 

 PUTPAR("DATMOD", "proc") 

 PUTPAR("ME_mod", "LPfc") 

 PUTPAR("LPBIN", str(LPbfc)) 

 TRFP()  

 PUTPAR("ME_mod", "LPbc") 

 LPbbc = (d62)/DW - 2*rec_corr 

 PUTPAR("LPBIN", str(LPbbc)) 

 PUTPAR("TDeff", str((LPbfc))) 

 TDoff = -d56/(2*DW) - rec_corr 

 PUTPAR("TDoff", str((TDoff))) 

 TRFP() 

 PUTPAR("TDoff", str((0))) 

 backshiftvalue = ((d56/(2*DW)) + (d63/DW)) + ((d54 / 

DW)*float(chunks)) + (d62/DW)*float(chunks) + 

(2*d55/DW)*float(chunks) - rec_corr 

 PUTPAR("NSP", str(backshiftvalue)) 

 XCMD("RS") 

 chunks += 1 

 data_r2 = GETPROCDATA(-500,500) 

 data_i2 = GETPROCDATA(-500,500,type = dataconst.PROCDATA_IMAG) 

 data_r = [x + y for x, y in zip(data_r, data_r2)] 

 data_i = [x + y for x, y in zip(data_i, data_i2)] 

 if (d63+d54)/DW + chunks * ((d62 + d54)/DW) > ( TD - ((d62 + 

d54)/DW)): 

  chunks += 1 

  RE(["temp_FIDadd", "123", "49"  , dataset[3]]) 

  WR(["temp_FIDadd", dataset[1], str(chunks + 2)  , 

dataset[3]]) 

  RE(["temp_FIDadd", dataset[1], str(chunks + 2)  , 

dataset[3]]) 

  PUTPAR("TDeff", str((d63)/DW- 2*rec_corr)) 

  LPbfc = (d56/2 / DW) + (d63/DW) - rec_corr 

  shiftvalue = ((d54 / DW) + (d63/DW)) + (2*d55/DW) + ((d54 

/ DW)*float(chunks)) + (d62/DW)*float(chunks) + 

(2*d55/DW)*float(chunks) + rec_corr 

  PUTPAR("NSP",str(shiftvalue)) 

  PUTPAR("DATMOD", "raw") 

  XCMD("LS") 

  PUTPAR("ME_mod", "LPfc") 

  PUTPAR("LPBIN", str(LPbfc)) 

  TRFP() 

  PUTPAR("ME_mod", "LPbc") 

  LPbbc = (d63/DW)  - 2*rec_corr 

  PUTPAR("LPBIN", str(LPbbc)) 

  PUTPAR("TDeff", str((LPbfc))) 

  TDoff = -d56/(2*DW) - rec_corr 
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  PUTPAR("TDoff", str((TDoff))) 

  TRFP() 

  PUTPAR("TDoff", str((0))) 

  PUTPAR("DATMOD", "proc") 

  backshiftvalue = ((d56/2 / DW) + (d63/DW))  + ((d54 / 

DW)*float(chunks)) + (d62/DW)*float(chunks) + 

(2*d55/DW)*float(chunks) 

  PUTPAR("NSP",str(backshiftvalue)) 

  XCMD("RS") 

  data_r2 = GETPROCDATA(-500,500) 

  data_i2 = GETPROCDATA(-500,500,type = 

dataconst.PROCDATA_IMAG) 

  data_r = [x + y for x, y in zip(data_r, data_r2)] 

  data_i = [x + y for x, y in zip(data_i, data_i2)] 

 

#Writing the data together and then storing it in a FID 

WR([dataset0[0] + "_ekstrap", "88282832", "1337"  , dataset0[3]]) 

RE([dataset0[0] + "_ekstrap", "88282832", "1337" , dataset0[3]]) 

 

SAVE_ARRAY_AS_1R1I(data_r, data_i) 

PUTPAR("TDeff", "0") 

TRFP()  

PUTPAR("NSP", str(float(rec_corr))) 

XCMD("RS") 

data_r3 = GETPROCDATA(-500,500) 

data_i3 = GETPROCDATA(-500,500,type = dataconst.PROCDATA_IMAG) 

data_grpdly_r = [x + y for x, y in zip(grpdly_cs, data_r3)] 

data_grpdly_i = [x + y for x, y in zip(grpdly_csi, data_i3)] 

 

SAVE_ARRAY_AS_1R1I(data_grpdly_r, data_grpdly_i) 

PUTPAR("DATMOD", "proc") 

PUTPAR("TDeff", str(TD)) 

GENFID(dataset0[1]) 

time.sleep(1) 

RE([dataset0[0] + "_ekstrap", dataset0[1], "1" , dataset0[3]]) 

PUTPAR("SI", str(2*TD)) 

PUTPAR("WDW", "EM") 

PUTPAR("PH_mod", "pk") 

PUTPAR("BC_mod", "quad") 

PUTPAR("FT_mod", "fqc") 

XCMD("xau PS_del_tempdata") 

 

 

11. Additional au macros 
 

PS_del_tempdata code: 

GETCURDATA 

 

DELETEEXPNO(name, 88282832 , disk, user); 
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DELETENAME("temp_FIDadd", disk, user); 

DELETENAME("temp_grpdly", disk, user); 

 

QUIT 

 

PS_del_exisdata code: 

GETCURDATA 

 

DELETEEXPNO(strcat(name, "_ekstrap"), expno , disk, user); 

 

QUIT 

 


