Electronic Supplementary Material (ESI) for Analyst. This journal is © The Royal Society of Chemistry 2021

Electronic supplementary information

Image Learning to Accurately Identify Complex Mixture Components Qiannan Duan, Jianchao Lee*, Jiayuan Chen, Yunjin Feng, Run Luo, Can Wang, Sifan Bi, Fenli Liu, Wenjing Wang, Yicai Huang, Zhaoyi Xu

Table of Contents

gures and tables:
Figure S12
Figure S2
Figure S3
Figure S45
Figure S5
Figure S67
Table S18
Table S29
Table S310
Table S411
Table S512

Design of color-combined template

Color-combined template

Figure S1 A combined template (in size of 1200×1200 dpi) was designed for preparing the multi-color wave filtering chip. The template consisted of three overlapping C/M/Y color layers (referring to inks: cyan, magenta and yellow), which were combined by presetting the CMY values in various directions.

Figure S2 Color differences between the reaction groups and CK groups. The color differences of (a) the selected AA chromogenic agents and (b) the selected heavy metal chromogenic agents.

Figure S3 A modified Inception v1 framework for predicting mixture concentrations by inputting the S-Img. Detailed architectures were shown in Table S5, and reprinted from <u>https://www.cv-foundation.org/openaccess/content_cvpr_2015/html/Szegedy_Going_Deeper_With_2015_CVPR_paper.htm</u> <u>1</u>.

Figure S4 Test set performances of the Inception V1 model. Scatter plots of (**a**) variable proportions of the training data, and (**b**) different image sizes. Evaluation parameters: R^2 and RMSE; dashed line, y = x line. Mean R^2 and RMSE of 8 AAs were remarked.

Figure S5 (a) S-Img set collected from 6,000 urine samples (containing 5 AAs: threonine, proline, histidine, glycine and phenylalanine). (b) S-Img set collected from 2,400 soil solution samples (containing 3 heavy mental ions: Ni^{2+} , Cu^{2+} and Cr^{3+}).

Figure S6 Distribution of relative standard deviation (RSD) between predicted vs. experimental values. (**a**) Violin plot of the RSD on five amino acids and ternary heavy mental ions. (**b**) Cumulative RSD on various concentration ranges of five amino acids and ternary heavy mental ions.

Entry	Description	Formula
1	Coomassie Brilliant Blue (CBB- G250)	
2	Bromocresol Green (BCG)	Br Br Br Br Br Br Br Br Br Br
3	Methyl Red (MR)	
4	Bromothymol Blue (BTB)	
5	Aluminon	ни . * 0
6	Naphthol Green	
7	Eriochrome Black T	The second secon
8	Nitroso-R Salt	OH ON Na*
9	Xylenol Orange	
10	Chrome Azurol-S (CAS)	из - ⁰ - ¹ - ¹ - ⁰ - ¹ - ⁰ - ¹ - ⁰ - ¹ - ⁰ - ¹ - ¹ - ⁰ - ¹ -

Entry	Description	pH	Working Conc. (g/L)	Temperature (°C)		
System I: 3-dimensional pollutant samples (bulk solution: water)						
1	NiSO ₄ ·6H ₂ O	3	1	25		
2	$Cu(NO_3)_2 \cdot 3H_2O$	3	1	25		
3	CrCl ₃ ·6H ₂ O	3	1	25		
	System II: 8-dimensional amir	no acid samples (bul	k solution: water)			
1	Alanine	8	20	25		
2	Glycine	8	20	25		
3	Cysteine	8	20	25		
4	Threonine	8	20	25		
5	Arginine	8	20	25		
6	Proline	8	20	25		
7	Phenylalanine	8	20	25		
8	8 Histidine		20	25		
System III: 5-dimensional amino acid samples (bulk solution: human urine)						
1	Threonine	8	20	25		
2	Proline	8	20	25		
3	Histidine	8	20	25		
4	Glycine	8	20	25		
5	Phenylalanine	8	20	25		
System IV: 3-dimensional pollutant samples (bulk solution: soil solution)						
1	NiSO ₄ ·6H ₂ O	3	1	25		
2	$Cu(NO_3)_2 \cdot 3H_2O$	3	1	25		
3	$CrCl_3 \cdot 6H_2O$	3	1	25		

Table S2 List of four mixed systems

All the working concentrations of heavy metal solutions refers to the metal atom concentrations.

		Image parameters		
Image resolution	Bit depth	Horizontal resolution	Vertical resolution	Color model
1280×720	24	600 dpi	600 dpi	RGB
Camera parameters				
Recording time	Private int width	Private int height	Video bit rate	Refocus
4 min	1280	720	1080 kbps	30 fps

5 amino acids in urine solution (mg L ⁻¹)				
Thr	Pro	His	Gly	L-Phe
-	-	215.65	13.87	3.42
3 heavy metals in soil solution (mg L ⁻¹)				
	Ni	Cu	Cr	
	0.03	0.14	0.02	

Table S4 Background values of the target free amino acids and heavy metals in real samples

Google Inception v1 CNN				
Layer	Layer(type)	Output Shape		
0	Input Layer	(None, 224,224,3)		
1	Convolution Layer	(None, 112,112,64)		
2	Relu function	(None, 112,112,64)		
3	Padding Layer	(None, 113, 113, 64)		
4	Max Pooling Layer	(None, 56, 56, 64)		
5	Local Response Normalization Layer	(None, 56, 56, 64)		
6	Convolution Layer	(None, 56, 56, 64)		
7	Relu function	(None, 56, 56, 64)		
8	Convolution Layer	(None, 56, 56, 192)		
9	Relu function	(None, 56, 56, 192)		
10	Local Response Normalization Layer	(None, 56, 56, 192)		
11	Max Padding Layer	(None, 57, 57, 192)		
12	Pooling Layer	(None, 28, 28, 192)		
13	Inception_Net Graph	(None, 28, 28, 256)		
14	Inception_Net Graph	(None, 28, 28, 480)		
15	Padding Layer	(None, 29, 29, 480)		
16	Max Pooling Layer	(None, 14, 14, 480)		
17	Inception_Net Graph	(None, 14, 14, 512)		
18	Inception_Net Graph	(None, 14, 14, 512)		
19	Inception_Net Graph	(None, 14, 14, 512)		
20	Inception_Net Graph	(None, 14, 14, 528)		
21	Inception_Net Graph	(None, 14, 14, 832)		
22	Padding Layer	(None, 15, 15, 832)		
23	Max Pooling Layer	(None, 7, 7, 832)		
24	Inception_Net Graph	(None, 7, 7, 832)		
25	Inception_Net Graph	(None, 7, 7, 1024)		
26	Max Pooling Layer	(None, 1, 1, 1024)		
27	Dropout Layer	(None, 1, 1, 1024)		
28	Flatten Layer	(None, 1024)		
29	Linear Layer	(None, 1000)		
30	Ramp	(None, 1000)		
31	Linear Layer	(None, X)		
32	Output	(None, X)		

Table S5 Detailed architecture of CNNs
--

RestNet-50 т

Layer	Layer(type)	Output Shape
0	Input Layer	(None, 224, 224, 3)
1	Convolution Layer	(None, 112, 112, 64)
2	Batch Normalization Layer	(None, 112, 112, 64)
3	Ramp	(None, 112, 112, 64)
4	Padding Layer	(None, 113, 113, 64)
5	Pooling Layer	(None, 56, 56, 64)

6	NetGraph (12 nodes)	(None, 56, 56, 256)	
7	NetGraph (10 nodes) (None, 56, 56, 256)		
8	NetGraph (10 nodes) (None, 56, 56, 256)		
9	NetGraph (12 nodes)	(None, 28, 28, 512)	
10	NetGraph (10 nodes)	(None, 28, 28, 512)	
11	NetGraph (10 nodes)	(None, 28, 28, 512)	
12	NetGraph (10 nodes)	(None, 28, 28, 512)	
13	NetGraph (12 nodes)	(None, 14, 14, 1024)	
14	NetGraph (10 nodes)	(None, 14, 14, 1024)	
15	NetGraph (10 nodes)	(None, 14, 14, 1024)	
16	NetGraph (10 nodes)	(None, 14, 14, 1024)	
17	NetGraph (10 nodes)	(None, 14, 14, 1024)	
18	NetGraph (10 nodes)	(None, 14, 14, 1024)	
19	NetGraph (12 nodes)	(None, 7, 7, 2048)	
20	NetGraph (10 nodes)	(None, 7, 7, 2048)	
21	NetGraph (10 nodes)	(None, 7, 7, 2048)	
22	Pooling Layer	(None, 1, 1, 2048)	
23	Flatten Layer	Vector (None, 2048)	
24	Linear Layer	Vector (None, 1000)	
25	Ramp	Vector (None, 1000)	
26	Linear Layer	Vector (None, X)	
27	Output	Vector (None, X)	
	SqueezeNet V1.1		
Layer	Layer(type)	Output Shape	
0	Input Layer	(None, 227, 227, 3)	
1	Convolution Layer	(None, 113, 113, 64)	
2	Ramp	(None, 113, 113, 64)	
3	Pooling Layer	(None, 56, 56, 64)	
	NatCranh (7 madag)	(None 56 56 128)	
4	Netoraph (7 hodes)	(10010, 50, 50, 120)	
4 5	NetGraph (7 nodes)	(None, 56, 56, 128)	
4 5 6	NetGraph (7 nodes) Padding Layer	(None, 56, 56, 128) (None, 57, 57, 128)	
4 5 6 7	NetGraph (7 nodes) Padding Layer Pooling Layer	(None, 56, 56, 128) (None, 57, 57, 128) (None, 28, 28, 128)	
4 5 6 7 8	NetGraph (7 nodes) NetGraph (7 nodes) Padding Layer Pooling Layer NetGraph (7 nodes)	(None, 56, 56, 128) (None, 57, 57, 128) (None, 28, 28, 128) (None, 28, 28, 256)	
4 5 6 7 8 9	NetGraph (7 nodes) Padding Layer Pooling Layer NetGraph (7 nodes) NetGraph (7 nodes)	(None, 56, 56, 128) (None, 57, 57, 128) (None, 28, 28, 128) (None, 28, 28, 256) (None, 28, 28, 256)	
4 5 6 7 8 9 10	NetGraph (7 nodes) Padding Layer Pooling Layer NetGraph (7 nodes) NetGraph (7 nodes) Padding Layer	(None, 56, 56, 128) (None, 57, 57, 128) (None, 28, 28, 128) (None, 28, 28, 256) (None, 29, 29, 256)	
4 5 6 7 8 9 10 11	NetGraph (7 nodes) Padding Layer Pooling Layer NetGraph (7 nodes) NetGraph (7 nodes) Padding Layer Pooling Layer Pooling Layer	(None, 56, 56, 128) (None, 57, 57, 128) (None, 28, 28, 128) (None, 28, 28, 256) (None, 29, 29, 256) (None, 14, 14, 256)	
4 5 6 7 8 9 10 11 12	NetGraph (7 nodes) NetGraph (7 nodes) Padding Layer Pooling Layer NetGraph (7 nodes) Padding Layer Pooling Layer NetGraph (7 nodes) NetGraph (7 nodes)	(None, 56, 56, 128) (None, 57, 57, 128) (None, 28, 28, 128) (None, 28, 28, 256) (None, 29, 29, 256) (None, 14, 14, 256) (None, 14, 14, 384)	
4 5 6 7 8 9 10 11 12 13	NetGraph (7 nodes) Padding Layer Pooling Layer NetGraph (7 nodes) NetGraph (7 nodes) Padding Layer Pooling Layer NetGraph (7 nodes) NetGraph (7 nodes) NetGraph (7 nodes)	(None, 56, 56, 128) (None, 57, 57, 128) (None, 28, 28, 128) (None, 28, 28, 256) (None, 29, 29, 256) (None, 14, 14, 256) (None, 14, 14, 384) (None, 14, 14, 384)	
4 5 6 7 8 9 10 11 12 13 14	NetGraph (7 nodes) NetGraph (7 nodes) Padding Layer Pooling Layer NetGraph (7 nodes) Padding Layer Pooling Layer NetGraph (7 nodes) NetGraph (7 nodes) NetGraph (7 nodes) NetGraph (7 nodes)	(None, 56, 56, 128) (None, 57, 57, 128) (None, 28, 28, 128) (None, 28, 28, 256) (None, 29, 29, 256) (None, 14, 14, 256) (None, 14, 14, 384) (None, 14, 14, 384) (None, 14, 14, 512)	
4 5 6 7 8 9 10 11 12 13 14 15	NetGraph (7 nodes) Padding Layer Pooling Layer NetGraph (7 nodes) NetGraph (7 nodes) Padding Layer Pooling Layer NetGraph (7 nodes) NetGraph (7 nodes) NetGraph (7 nodes) NetGraph (7 nodes) NetGraph (7 nodes)	(None, 56, 56, 128) (None, 57, 57, 128) (None, 28, 28, 128) (None, 28, 28, 256) (None, 28, 28, 256) (None, 29, 29, 256) (None, 14, 14, 256) (None, 14, 14, 384) (None, 14, 14, 384) (None, 14, 14, 512) (None, 14, 14, 512)	
4 5 6 7 8 9 10 11 12 13 14 15 16	NetGraph (7 nodes) NetGraph (7 nodes) Padding Layer Pooling Layer NetGraph (7 nodes) Padding Layer Pooling Layer NetGraph (7 nodes) NetGraph (7 nodes) NetGraph (7 nodes) NetGraph (7 nodes) NetGraph (7 nodes) Dropout Layer	(None, 56, 56, 128) (None, 57, 57, 128) (None, 28, 28, 128) (None, 28, 28, 256) (None, 29, 29, 256) (None, 14, 14, 256) (None, 14, 14, 384) (None, 14, 14, 384) (None, 14, 14, 512) (None, 14, 14, 512)	
4 5 6 7 8 9 10 11 12 13 14 15 16 17	NetGraph (7 nodes) Padding Layer Pooling Layer NetGraph (7 nodes) NetGraph (7 nodes) Padding Layer Pooling Layer NetGraph (7 nodes) NetGraph (7 nodes) NetGraph (7 nodes) NetGraph (7 nodes) NetGraph (7 nodes) Dropout Layer Convolution Layer	(None, 56, 56, 128) (None, 57, 57, 128) (None, 28, 28, 128) (None, 28, 28, 256) (None, 29, 29, 256) (None, 14, 14, 256) (None, 14, 14, 384) (None, 14, 14, 384) (None, 14, 14, 512) (None, 14, 14, 512) (None, 14, 14, 512) (None, 14, 14, 1000)	
4 5 6 7 8 9 10 11 12 13 14 15 16 17 18	NetGraph (7 nodes) NetGraph (7 nodes) Padding Layer Pooling Layer NetGraph (7 nodes) Padding Layer Pooling Layer NetGraph (7 nodes) NetGraph (7 nodes) NetGraph (7 nodes) NetGraph (7 nodes) NetGraph (7 nodes) Dropout Layer Convolution Layer Ramp	(None, 56, 56, 128) (None, 57, 57, 128) (None, 28, 28, 128) (None, 28, 28, 256) (None, 29, 29, 256) (None, 14, 14, 256) (None, 14, 14, 384) (None, 14, 14, 384) (None, 14, 14, 512) (None, 14, 14, 512) (None, 14, 14, 512) (None, 14, 14, 1000) (None, 14, 14, 1000)	
4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20	NetGraph (7 nodes) Padding Layer Pooling Layer NetGraph (7 nodes) NetGraph (7 nodes) Padding Layer Pooling Layer NetGraph (7 nodes) NetGraph (7 nodes) NetGraph (7 nodes) NetGraph (7 nodes) NetGraph (7 nodes) Dropout Layer Convolution Layer Ramp Aggregation Layer	(None, 56, 56, 128) $(None, 57, 57, 128)$ $(None, 28, 28, 128)$ $(None, 28, 28, 256)$ $(None, 29, 29, 256)$ $(None, 14, 14, 256)$ $(None, 14, 14, 384)$ $(None, 14, 14, 384)$ $(None, 14, 14, 512)$ $(None, 14, 14, 512)$ $(None, 14, 14, 512)$ $(None, 14, 14, 1000)$ $(None, 14, 14, 1000)$ $(None, 1000)$	
4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21	NetGraph (7 nodes) NetGraph (7 nodes) Padding Layer Pooling Layer NetGraph (7 nodes) Padding Layer Pooling Layer NetGraph (7 nodes) NetGraph (7 nodes) NetGraph (7 nodes) NetGraph (7 nodes) NetGraph (7 nodes) Dropout Layer Convolution Layer Ramp Aggregation Layer Flatten Layer	(None, 56, 56, 128) (None, 57, 57, 128) (None, 28, 28, 128) (None, 28, 28, 256) (None, 28, 28, 256) (None, 29, 29, 256) (None, 14, 14, 256) (None, 14, 14, 384) (None, 14, 14, 384) (None, 14, 14, 512) (None, 14, 14, 512) (None, 14, 14, 512) (None, 14, 14, 1000) (None, 14, 14, 1000) (None, 14, 14, 1000) (None, 14, 1000) (None, 1000) (None, 1000)	
$ \begin{array}{c} 4\\5\\6\\7\\8\\9\\10\\11\\12\\13\\14\\15\\16\\17\\18\\19\\20\\21\\20\\21\\22\end{array} $	NetGraph (7 nodes) Padding Layer Pooling Layer NetGraph (7 nodes) NetGraph (7 nodes) Padding Layer Pooling Layer NetGraph (7 nodes) NetGraph (7 nodes) NetGraph (7 nodes) NetGraph (7 nodes) NetGraph (7 nodes) Dropout Layer Convolution Layer Ramp Aggregation Layer Flatten Layer Ramp	(None, 56, 56, 128) $(None, 57, 57, 128)$ $(None, 28, 28, 128)$ $(None, 28, 28, 256)$ $(None, 29, 29, 256)$ $(None, 14, 14, 256)$ $(None, 14, 14, 384)$ $(None, 14, 14, 384)$ $(None, 14, 14, 512)$ $(None, 14, 14, 512)$ $(None, 14, 14, 512)$ $(None, 14, 14, 1000)$ $(None, 14, 14, 1000)$ $(None, 1000)$ $(None, 1000)$ $(None, 1000)$	

23	Output	(None, X)		
	LeNet-5			
Layer	Layer(type)	Output Shape		
0	Input Layer	(None, 28, 28, 3)		
1	Convolution Layer	(None, 40, 40, 20)		
2	Ramp Layer	(None, 40, 40, 20)		
3	Pooling Layer	(None, 12, 12, 20)		
4	Convolution Layer	(None, 8, 8, 50)		
5	Ramp Layer	(None, 8, 8, 50)		
6	Pooling Layer	(None, 4, 4, 50)		
7	Flatten Layer	(None, 800)		
8	Linear Layer	(None, 500)		
9	Ramp Layer	(None, 500)		
10	Linear Layer	(None, X)		
11	Output	(None, X)		

X represents the mixture dimension of output vectors, and its value is as follows: 3, 5 or 8. Besides, all datasets used for training and test the models can be publicly downloaded at

https://github.com/Jianchaoleesnnu/Image-Dataset-from-Complex-Chemistry without any restriction.