Supplementary information For

Enhancement of Cardiac Contractility Using Goldcoated SU-8 Cantilevers and Their Application to Drug-induced Cardiac Toxicity Tests

Jongyun Kim^a, Arunkumar Shanmugasundaram^b and Dong-Weon Lee^{b,c,d*}

^a Graduate School of Mechanical Engineering,

Chonnam National University, Gwangju 61186, Republic of Korea.

^b MEMS and Nanotechnology Laboratory,

School of Mechanical Engineering, Chonnam National University,

Gwangju 61186, Republic of Korea.

^c Center for Next-Generation Sensor Research and Development, Chonnam National University, Gwangju 61186, Republic of Korea.

^d Advanced Medical Device Research Center for Cardiovascular Disease. Chonnam National University, Gwangju 61186, Republic of Korea.

* Corresponding author, Email: mems@jnu.ac.kr.

Graphene Transfer Procedure in 3 simple steps

Fig. S1. Photograph shows the detailed fabrication process flow of the graphene coated SU-8 Substrate.

Fig. S2. Graphene transferred silicon wafer image. (a, b) Graphene is distinguishable through color differences, such as in images after transfer to SiO_2 wafer, and (c) RAMAN spectra of the graphene. Scale bar represent 1 cm.

Fig. S3. Fabrication process flow of the SU-8 cantilever; (a)silicon substrate, (b) 300 nm thick SiO₂ sacrificial layer growth on Si wafer, (c) cantilever pattern using SU-8 3010, (d) metal pattern, (e) groove pattern using SU-8 2002, (f) cantilever body fabrication using SU-8 2050, (g) release, and (h) SU-8 cantilever array.

Fig. S4. Optical images of the SU-8 cantilever arrays (a) fabricated using a 4-inch silicon wafer, (b) with and without gold deposition.

Fig. S5. Water contact angle images according to various substrates such as PS, PDMS, PI and SU-8.

Fig. S6. (a) Optical images of cardiomyocytes cultured for 3 days on PS, PDMS, PI, and SU-8 substrates.

Fig. S7. Staining images of cardiomyocytes cultured on various micro grooved substrates such as PDMS, PI, and SU-8.

Fig. S8. Cx43 protein expression of cardiomyocytes cultured on PS, bare SU-8, and Au-coated SU-8 substrate.

Fig. S9. Vinculin protein expression by cardiomyocytes cultured on PS, bare SU-8, and Aucoated SU-8 substrate.

Fig. S10. (a-d) Confocal images of the cultured cardiomyocytes monitored in 250 μ m × 250 μ m area on SU-8 cantilever from day 3 to 10 after seeding. (e) Bar plot shows the number of active cells on SU-8 cantilever. Error bars are mean ± s.d., (n = 4).

Fig. S11. (a) Staining images of the cardiomyocytes cultured on bare SU-8 cantilever and Aucoated SU-8 cantilever. (b) Cantilever displacement owing to the contraction and relaxation of cardiomyocytes cultured on bare SU-8 cantilever and Au-coated SU-8 cantilever on day 21.

Fig. S12. Verapamil drug-dose response curve. (a) Inotropic and (b) chronotropic effect of cardiomyocytes cultured on bare SU-8 cantilever. The bars and error bars indicate the mean \pm s.d., (n = 10).

Fig. S13. Quinidine drug-dose response curve. (a) Inotropic and (b) chronotropic effect of cardiomyocytes cultured on bare SU-8 cantilever. The bars and error bars indicate the mean \pm s.d., (n = 10).

S.	Length	Width	Thickness	Ratio	Displacement	Spring	Factors
No	(µm)	(µm)	(µm)		(µm)	Constan	
						t	
						(mN/m)	
1	6000	2000	5	1:3	79	1.15	Roll-off
2	6000	2000	10	1:3	53	9.25	Roll-off
3	6000	2000	15	1:3	44	31.25	Optimized
4	6000	2000	20	1:3	35	74.07	High spring
							constant
5	6000	500	15	1:12	82	7.81	Self-
							bending
6	6000	1000	15	1:6	61	15.62	Self-
							bending
7	6000	2000	15	1:3	44	31.25	Optimized
8	6000	4000	15	1:1.5	31	62.50	High spring
							constant
9	2000	2000	15	1:1	37	843.75	High spring
							constant
10	4000	2000	15	1:2	40	105.46	High spring
							constant
11	6000	2000	15	1:3	44	31.25	Optimized
12	8000	2000	15	1:4	51	13.18	High cell
							consumptio
							n

Table S1. Various parameters that has been used to optimize the cantilever design or achieving maximum displacement.

Parameters	Without Au	With Au	
Displacement (µm)	14.2	17.6	
Rise time (ms)	270 ± 13	272 ± 12	
Decay time (ms)	1234 ± 18	1797 ± 17	
Duration (ms)	1504 ± 20	2069 ± 16	
Heart rate (Hz)	0.66 ± 0.01	0.48 ± 0.01	

Table S2. Contraction properties of cardiomyocytes on day 21 (maximum displacement date).