Supplementary Information for

A long-wavelength activable AIEgen fluorescent probe for HCIO and

cell apoptosis imaging

Mengyun Wang^a, Xiaojing Han^a, Xiaopeng Yang^a, Jianfei Liu^a, Xiangzhi Song^b, Weimin Zhu^{a*}, Yong Ye^{a*}

^aGreen Catalysis Center, and College of Chemistry, Zhengzhou University, Zhengzhou 450001, China

^bCollege of Chemistry & Chemical Engineering, Central South University, Changsha 410083, China

EXPERIMENTAL SECTION

Scheme S1. Synthetic route of QM-ClO.

Synthesis of M-1. Under N_2 atmosphere, 2-methylquinoline (1.43 g, 10 mmol) and iodoethane (4.71 g, 30 mmol) were dissolved in acetonitrile (20 mL) and refluxed for 12 h. Then the reaction product was concentrated under reduced pressure to obtain a light yellow solid M-1 as a crude product, which can be used in the next reaction without further purification.

Synthesis of QM. Under ice-water bath conditions, compound M-1 (1.74 g, 6 mmol) and malononitrile (1.00 g, 15 mmol) were dissolved in absolute ethanol (20 mL), and sodium ethoxide solution (20 mL anhydrous Ethanol, 0.97 g sodium). After 4 hours of

reaction, the mixture was poured into 500 mL ice water, and the pH was adjusted to 7-8 with 1 M hydrochloric acid solution. The resulting precipitate was filtered, washed with distilled water and dried in vacuum to obtain the desired product QM: yellow solid (1.06 g, 78%).

P-Hydroxybenzaldehyde Synthesis of H-1. (2 mmol, 0.12 **g**) and dimethylthiocarbamoyl chloride (10 mmol, 1.24 g) were dissolved in 10 mL of anhydrous dichloromethane, then 400 µL DIEA was added, and the mixture was stirred at room temperature for 4 hours. Concentrated under reduced pressure to remove dichloromethane, and then purified by column chromatography(0.17 g, 40%). Apparatus. Absorption and fluorescence emission spectrawere measured usingHP-8453 UV/Visspectrometerand F-4600 FL spectrophotometer. The slit width is 5 nm/5 nm, excitation voltage is 700V. Nuclear magnetic resonance (NMR) spectra were carried out by using Bruker DTX-400 spectrometer.High-resolution mass spectrometry(HRMS) was performed on Agilent ESI-Q-TOF mass instrument.ESI mass spectra were implemented on the HPLCQ-Tof HR-MS. The fluorescence imaging of cellswere tested by confocallaser-scanning microscope (Leica TCS SP8). Dynamic light scattering (DLS) was performed usingNanoPlus-3 DLS particle size/zeta potential analyzer.

Fig S1. ¹H NMR spectrum of QM-CIO in CDCl₃.

Fig S2. ¹³C NMR spectrum of QM-ClO in CDCl₃.

Fig S3. HR-MS spectra of QM-ClO.

Fig S4. The UV-vis spectra of probe QM-ClO (10.0 μ M) in the presence of ClO⁻.

Fig S6. Linear plot of the fluorescence emission against ClO⁻ concentrations. ($\lambda_{ex} = 430$ nm).

Fig S7. HR-MS spectra of QM-CIO in the presence of ClO⁻ (10 equiv.)

Structure	$\lambda_{\rm ex}/\lambda_{\rm em}$	Responset	Detection	AIE	Cell
	(nm)	ime	limit		imaging
Sensors and Actuators B: Chemical 2017 246 293-299	488/511 635/713	10 s	10.6nM	NO	Endogenous and exogenous hypochlorous acid in cell lysosomes.
Anal. Chem. 2017 , 89, 10384- 10390	405/505	150 s	0.674 μM	NO	Detection of HClO in intracellular lysosomes.
Chem. Sci., 2018 , 9, 6035 (++) + (+) +	426/492, 562 360/465	60 s 20 min	89 nM 8.2×10 ⁻⁹ M	NO	The production of HClO during wound healing in mice. Membrane permeability and low toxicity
Chem. Commun., 2019 , 55, 12912	365/437, 497	60 s	16 nM	NO	Production of hypochlorous acid during alcohol- induced liver injury

Table S1. Comparison of reported probes for recognition of HClO.

R R=Et, PhCH ₂ or Ph	532/548	2 s	0.3 nM	NO	Exogenous
	530/545	5 s	0.8 nM		and
	532/550	100 s	9.2 nM		endogenous
					hypochlorous
J. Mater. Chem. B, 2019 , 7,					acid, and
6861					localized in
					mitochondria
	680/710	5s	0.09 μM	NO	Fluctuations
					in
					endogenous
÷ ÷					hypochlorous
					acid produced
					by the
					immune
					system during
Sensors and Actuators: B.					Staphylococcu
Chemical 2021 327 128884					s aureus
					infection and
					muscle tissue
					injury in live
					mice
	365/450,	3 min	4.2 × 10 ^{−7} M	NO	Cellular
S S	580				imaging of
N N					hypochlorous
ОН					acid
Spectrochimica Acta Part A:					
Molecular and Biomolecular					
Spectroscopy 2020 239					
118515					
	630/738	immediate	0.09 μM	NO	Exogenous
Te N Te					and
$\left \left\langle \left\langle \mathbf{N}_{\mathbf{N}} \right\rangle \right\rangle \right\rangle$					endogenous
F F					detection
					HCIO
H ₃ CÓ OCH ₃					
Talanta 2021 233 122581					
	430/620	100 s	30.8 nM	Yes	Changes of
					hypochlorous
					acid content
					during CCCP-
					induced cell
This work					apoptosis