Localized Surface Plasmon Resonance Aptasensor for Selective Detection of SARS-CoV-2

S1 Protein

Tyra Lewis[†], Erin Giroux[†], Marko Jovic[‡], Sanela Martic-Milne^{†*}

†Department of Forensic Science, Environmental and Life Sciences Program, Trent University,

Ontario, Canada, K9L0G2

‡Nicoya Lifesciences Inc., Kitchener, Ontario, Canada, N2G2K4

Fig. S1. SEM images of LSPR chip at various magnifications. The chip surface contains biotin film on gold nanoparticles.

Fig. S2. Absorbance spectrum of LSPR Biotin-Au chip.

Fig. S3. Sensorgram showing fabrication process involving streptavidin protein loading to the biotin-gold chip followed by immobilization of S1 and S1-T aptamers on two different channels ([streptavidin] = 0.5μ M; [S1 aptamer] = 50μ g/mL; [S1 aptamer-T] = 50μ g/mL; flow rate = 20μ L/min).

Fig. S4. Signal response after immobilization of N, S1- and S1-T aptamer on individual channels with minimum target values provided for each ([Aptamer] = $50 \mu g/mL$).

Fig. S5. Signal response after immobilization of S1 aptamer with 3 subsequent aptamer injections ([Aptamer] = $16 \mu g/mL$).

Fig. S6. Representative sensorgram of the S1 protein binding (1) followed by the regeneration optimization with subsequent injections of 0.5% SDS buffer (2-3) ([S1 Protein] = 33 nM (2.5 μ g/mL), regeneration flow rate = 150 μ L/min).

Fig. S7. (A) Representative sensorgram of fitted data (black lines) for varying concentrations of S1 protein (colored lines) using the S1 aptasensor ([S1 protein] = 32 pM to 131 nM). (B) LSPR signal change as a function of S1 protein concentration determined from sensorgram (A) ([S1 protein] = 0 to 131 nM).

Fig. S8. Comparison of LSPR signal responses for S1 protein using the S1 Aptamer-T or the S1 Aptamer ([Aptamer] = $50 \mu g/mL$, data represent average and error bars of triplicate measurements).

Protein	k _a (1/M*s)	<i>k</i> _d (1/s)	K _D (nM)
SARS-CoV-2 S1	9.26 x $10^4 \pm 1.05$ x 10^4	$3.72 \ge 10^{-5} \pm 1.66 \ge 10^{-5}$	0.41 ± 0.23
SARS-CoV-2 S2	$2.37 \ge 10^5 \pm 3.82 \ge 10^4$	$1.51 \ge 10^{-3} \pm 4.03 \ge 10^{-4}$	6.29 ± 0.69
SARS-CoV-2 RBD	4.10 x $10^4 \pm 1.13$ x 10^3	$6.98 \ge 10^{-4} \pm 5.40 \ge 10^{-4}$	17.28 ± 13.75

 Table S1. Experimental fitting parameters for various SARS-CoV-2 proteins using S1 aptamer

Protein	k _a (1/M*s)	k _d (1/s)	K _D (nM)
SARS-CoV-2 S1	6.65 x $10^4 \pm 1.22$ x 10^4	1.01 x $10^{-4} \pm 5.19$ x 10^{-5}	1.48 ± 0.7
SARS-CoV-2 S2	1.86 x $10^5 \pm 9.39$ x 10^4	$1.84 \ge 10^{-2} \pm 2.91 \ge 10^{-2}$	104.13 ± 160.2
SARS-CoV-2 RBD	8.25 x $10^4 \pm 3.36$ x 10^3	5.02 x $10^{-4} \pm 8.21$ x 10^{-4}	5.94 ± 9.7

 Table S2. Experimental fitting parameters for various SARS-CoV-2 proteins using S1-T aptamer

Protein	k _a (1/M*s)	k _d (1/s)	K _D (nM)
SARS-CoV-2 S1	2.22 x $10^5 \pm 9.05$ x 10^4	8.44 x $10^{-4} \pm 3.62$ x 10^{-4}	3.78 ± 0.07
SARS-CoV-2 S2	$3.92 \text{ x } 10^4 \pm 2.55 \text{ x } 10^4$	4.55 x $10^{-2} \pm 1.08$ x 10^{-2}	2389.67 ± 2867.2
SARS-CoV-2 RBD	$1.52 \ge 10^5 \pm 1.83 \ge 10^5$	$7.87 \ge 10^{-3} \pm 8.78 \ge 10^{-3}$	152.69 ± 167.1

 Table S3. Experimental fitting parameters for various SARS-CoV-2 proteins using N-T aptamer

Fig. S9. Representative sensorgrams of fitted data (black lines) for varying concentrations of A) S1 protein (colored lines), B) S2 protein, C) RBD protein using the S1 aptasensor ([protein] = $0 - 2.5 \mu g/mL$).

Fig. S10. Representative sensorgrams of fitted data (black lines) for varying concentrations of A) S1 protein (colored lines), B) S2 protein, C) RBD protein using the S1-T aptasensor ([protein] = $0 - 2.5 \ \mu g/mL$).

Fig. S11. Representative sensorgrams of fitted data (black lines) for varying concentrations of A) S1 protein (colored lines), B) S2 protein, C) RBD protein using the N-T aptasensor ([protein] = $0 - 2.5 \,\mu g/mL$).

Fig. S12. A) Representative sensorgram and B) plot of LSPR signals at t=610 s, of SARS-CoV-2 S1, and various mixtures; S1+N, S1+N+RBD, S1+N+RBD+S2 ([each protein] = $2.5 \ \mu g/mL$).

Fig. S13. Molecular docking modelling of SARS-CoV S1 protein (PDB ID: 6CRZ) and S1 aptamer using PatchDock WebServer and visualized with Discovery Studio Visualizer Software.

Fig. S14. Representative sensorgram of fitted data (black lines) for various concentrations of SARS-CoV S1 protein (colored lines) using the S1 aptasensor ([SARS CoV S1] = 4.2, 8.4, 16.8 and 33.6 nM (0.3 to 2.5 μ g/mL)).

Table S4. Curve fitting data for SARS-CoV S1 protein with the S1 aptasensor. The 1:1 binding model was used in the TraceDrawer Software to obtain the k_a , k_d , and K_D values. Values represent triplicate measurements.

	$k_a \left(1/\mathrm{M*s}\right)$	k_d (1/s)	K_D (nM)
SARS-CoV	$3.99 \ge 10^5 \pm 2.65 \ge 10^4$	$1.17 \ge 10^{-3} \pm 2.10 \ge 10^{-4}$	2.9 ± 0.4

Fig. S15. Sensorgram showing sensor fabrication and performance: (1) streptavidin protein loading to the biotin-gold chip (flow rate = $20 \ \mu L/min$); followed by (2) immobilization of S1 aptamer (flow rate = $20 \ \mu L/min$); then (3) injection of 1000x diluted serum albumin spiked with S1 protein sample (flow rate = $10 \ \mu L/min$); (4) surface regeneration with 0.5% SDS (flow rate = $150 \ \mu L/min$); (5) injection of S1 protein in buffer (flow rate = $20 \ \mu L/min$); (6) surface regeneration with 0.5% SDS (flow rate = $150 \ \mu L/min$) ([streptavidin] = $0.5 \ \mu M$; [S1 aptamer] = $50 \ \mu g/mL$; [S1 protein] = $0.25 \ \mu g/mL$).

Fig. S16. Plot of LSPR signal change for SARS-CoV-2 S1 protein in spiked buffer solution compared to the 1000x diluted spiked serum albumin solution with or without S1 protein ([S1 Protein] = $2.5 \mu \text{g/mL}$; signals represent average of triplicate measurements with standard deviations shown as error bars).

Fig. S17. Representative sensorgrams showing repeatability of the SARS-CoV-2 S1 protein injections using offline prepared S1 aptamer sensor after specific storage time: (A) at t = 0 days; (B) t = 10 days; (C) t = 24 days (all S1 protein injections were followed by regeneration using 0.5% SDS buffer; [S1 Protein] = 1 µg/mL).

Fig. S18. (A) LSPR signals for 9 repeat injections of S1 protein using the online sensor or offline-prepared sensor with the shelf-life = 0, 10 or 24 days (data represent average of duplicate measurements with error bars showing standard deviation); (B) Average LSPR signals for the online or offline-prepared sensors used for 9 repeat injections of S1 protein on 0, 10 or 24 days; (C) Average LSPR signals for the offline-prepared sensor used for triplicate injections of blank buffer, BSA and S1 Protein ([S1 protein] = [BSA] = 1 μ g/mL; regeneration conditions = 0.5% SDS).