Electronic Supplementary Information

Visible light-driven self-powered aptasensor for ultrasensitive Microcystin-LR detection based on the carrier density effect of N-doped graphene hydrogel/hematite Schottky junction

Linhua Zhang,^a Ding Jiang,^{a,b,*} Xueling Shan,^{a,b} Xiaojiao Du,^c Meng Wei,^a Yude
Zhang,^a Zhidong Chen ^{a,b,*}

^a Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology, School of Petrochemical Engineering, Changzhou University, Changzhou 213164, China

^b Advanced Catalysis and Green Manufacturing Collaborative Innovation Center, Changzhou University, Changzhou 213164, China

^c Oakland International Associated Laboratory, School of Photoelectric Engineering, Changzhou Institute of Technology, Changzhou, Jiangsu, 213032, P. R. China

E-mail address: jiangding@cczu.edu.cn (D. Jiang)

zdchen@cczu.edu.cn (Z. Chen)

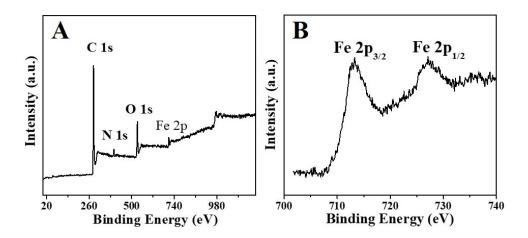
^{*}Corresponding author.

Contents.

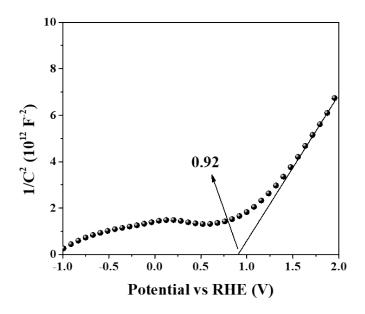
Materials and reagents	S3
Synthesis of Graphite Oxide (GO)	S3
Synthesis of different nitrogen content NGH/Fe ₂ O ₃	S3
XPS survey patterns of NGH/Fe ₂ O ₃ and high-resolution spectra of the Fe	e 2p in
NGH/Fe ₂ O ₃ (Fig. S1)	S5
Mott-Schottky plot of pure Fe ₂ O ₃ (Fig. S2)	S6
XPS patterns of NGH/Fe ₂ O ₃ with different glycine (Fig. S3)	S7
Optimization of Experimental Conditions (Fig. S4)	S8
Tauc plots showing (αhν) ² versus hv curves (Fig. S5)	S9
Comparison for the determination of MC-LR (Table S1)	S10

Materials and reagents

Concentrated sulfuric acid (H₂SO₄), potassium nitrate (KNO₃), potassium permanganate (KMnO₄), hydrogen peroxide (H₂O₂), iron nitrate (Fe(NO₃)₃·9H₂O), dimethylformamide (DMF), hydrochloric acid (HCl), sodium sulfate (Na₂SO₄), sodium hydroxide (NaOH), glycine and ethanol were purchased from Sinopharm Chemical Reagent Co., Ltd. Natural flake graphite was obtained from Tsingtao Longyuan Carbon Materials Co., Ltd. The MC-LR was achieved from Enzo Life Sciences, Inc. and its aptamer was gained from Sangon Biotech Co., Ltd., with the following sequence: 5'-GGC GCC AAA CAG GAC CAC CAT GAC AAT TAC CCA TAC CAC CTC ATT ATG CCC CAT CTC CGC -3'.


Synthesis of Graphite Oxide (GO)

A modified Hummers method was used to prepare GO in this experiment. Briefly, flake graphite (5 g) and NaNO₃ (3 g) were put into a flask, and concentrated H₂SO₄ (120 mL, 98%) was added under stirring in an ice bath. KMnO₄ (22.5 g) was slowly added to the above mixture over 1 h and followed by continuously stirring at 23°C for 2 h. Then H₂SO₄ aqueous solution (700 mL, 5 wt %) was slowly added under stirring, and the temperature was kept at 98°C. When the temperature was decreased to 60°C, H₂O₂ aqueous solution (15 mL, 30 wt %) was added. The product was washed with HCl solution (5 wt %) and distilled water several times and freeze-dried.


Synthesis of different nitrogen content NGH/Fe₂O₃

To further studied the effect of nitrogen content on porosity and photoelectricity, the as-synthesized NGH/Fe₂O₃ samples with different glycine mass of 0 mg, 100 mg, 200 mg, and 300 mg were prepared in the meanwhile with the same method. (Among these, the sample with 0 mg glycine was marked as G-Fe₂O₃.)

Results and discussion

Fig. S1. XPS survey patterns of NGH/Fe₂O₃ (A) and high-resolution spectra of the Fe 2p in NGH/Fe₂O₃ (B).

Fig. S2. Mott-Schottky plot of pure Fe_2O_3 .

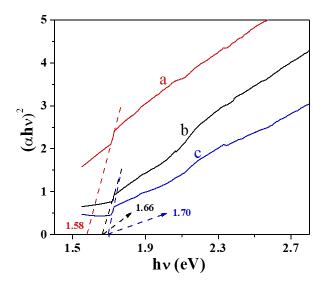


Fig. S3. Tauc plots showing $(ahv)^2$ versus hv curves of (a) NGH/Fe₂O₃, (b) G/Fe₂O₃ and (c) Fe₂O₃.

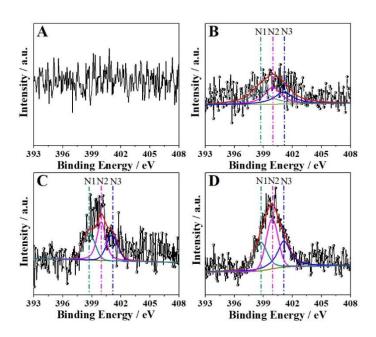
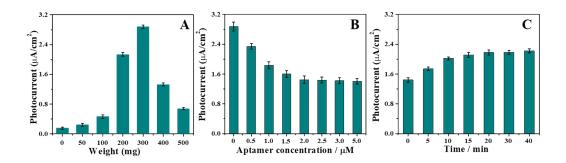



Fig. S4. XPS patterns of NGH/Fe₂O₃ with different glycine: (A) 0 mg, (B) 100 mg, (C) 200 mg, and (D) 300 mg.

Fig. S5. Photocurrents of NGH/Fe₂O₃ with different (A) glycine additions (B) aptamer concentrations and (C) incubation time.

Table S1. Comparison of different methods for the determination of MC-LR

Method	Linear range (nM)	Detection limit(nM)	Ref.
Protein phosphatase inhibition	0.93 ~ 40.51	0.93	2
Fluorescent aptasensor	0.4 ~ 1200	0.138	3
Colorimetric sensor	0.5 ~ 7500	0.37	4
PEC immunoassay	0.005 ~ 503	0.001	5
PEC immunoassay	0.01 ~ 10	0.055	6
PEC aptasensor	0.001 ~ 5	0.23×10^{-3}	This work

References

- 1. X. Bai, Y. Zhai and Y. Zhang, J. Phys. Chem. C, 2011, 115, 11673-11677.
- 2. G. Catanante, L. Espin and J. L. Marty, Biosens. Bioelectron., 2015, 67, 700-707.
- 3. S. M. Taghdisi, N. M. Danesh, M. Ramezani, N. Ghows, S. A. Mousavi Shaegh and K. Abnous, *Talanta*, 2017, **166**, 187-192.
- X. Li, R. Cheng, H. Shi, B. Tang, H. Xiao and G. Zhao, *J. Hazard. Mater.*, 2016,
 304, 474-480.
- J. Wei, A. Qileng, Y. Yan, H. Lei, S. Zhang, W. Liu and Y. Liu, *Anal. Chim. Acta*, 2017, 994, 82-91.
- J. Tian, H. Zhao, X. Quan, Y. Zhang, H. Yu and S. Chen, Sens. Actuators, B, 2014,
 196, 532-538.