Supporting Information

Polymer surface ligand and silica coating induced highly stable and enhanced aqueous fluorescent perovskite nanocrystal for efficient Hg²⁺ and glutathione detection Yun Shu,^a Linyan Sun,^a Yan Wang,^a Dangqin Jin,^b Qin Xu,^{a,*} Xiaoya Hu^{a,*}

^aSchool of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou 225002, P.R.China ^bDepartment of Chemical Engineering, Yangzhou Polytechnic Institute, Yangzhou 225127, P.R.China

*Corresponding author. Email: xuqin@yzu.edu.cn, <u>xyhu@yzu.edu.cn</u>

Fig. S1. Influence of different reaction conditions on fluorescence intensity of CsPbBr₃-mPEG@SiO₂ NCs. (A) amounts of mPEG-NH₂, (B) volume of added TMOS and (C) water. (D) Stirring time after adding water. (E) Fluorescence intensity at different pH

Fig. S2. The graph of Integrated FL intensity/Absorbance: (A) R6G in ethanol, (B) CsPbBr₃-mPEG@SiO₂ in toluene, respectively.

Fig. S3. Feasibility diagram of CsPbBr₃-mPEG@SiO₂ NCs fluorescence quenching, the illustration is the corresponding fluorescent physical picture. Fluorescence spectra of (a) CsPbBr₃-mPEG@SiO₂ solution and (b) CsPbBr₃-mPEG@SiO₂ solution with Hg^{2+} .

Fig. S4. (A) Changes in fluorescence quenching of CsPbBr₃-mPEG@SiO₂ NCs at different concentration of CsPbBr₃-mPEG@SiO₂. $\Delta F = F_0 - F$, where F_0 and F are the fluorescence intensity of CsPbBr₃-mPEG@SiO₂ solution in the absence and presence of Hg²⁺. (B) Effect of time on the fluorescence intensity of (a) CsPbBr₃-mPEG@SiO₂ NCs and (b) CsPbBr₃-mPEG@SiO₂+Hg²⁺ (50 nM).

Fig. S5. (A) The FT-IR spectra of the (a) CsPbBr₃-mPEG@SiO₂, (b) CsPbBr₃-mPEG@SiO₂+Hg²⁺, (c) CsPbBr₃-mPEG@SiO₂+Hg²⁺+GSH and GSH. (B, C) TEM image of CsPbBr₃-mPEG@SiO₂+Hg²⁺ and CsPbBr₃-mPEG@SiO₂+Hg²⁺+GSH in water solution.

Fig. S6. Fluorescent physical map of CsPbBr₃-mPEG@SiO₂ in the presence of Hg²⁺ (50 nM) and other cations (50 μ M), respectively.

Fig. S7. (A) Change in the fluorescence intensity of CsPbBr₃-mPEG@SiO₂ in the presence of Hg²⁺ (50 nM) with various coexisting cations (50 μ M). (B) Fluorescent physical map of CsPbBr₃-mPEG@SiO₂ in the presence of Hg²⁺ (50 nM) with various coexisting cations (50 μ M).

Fig. S8. (A) Changes in fluorescence quenching of CsPbBr₃-mPEG@SiO₂ at different T. $\Delta F = F - F_0$, where F and F_0 are the fluorescence intensity of CsPbBr₃-mPEG@SiO₂+Hg²⁺ in the presence and absence of GSH. (B) Effect of time on the fluorescence intensity of (a) CsPbBr₃-mPEG@SiO₂+Hg²⁺ and (b) CsPbBr₃-mPEG@SiO₂+Hg²⁺+GSH (20 μ M).

Fig. S9. Fluorescence decay curves of CsPbBr₃-mPEG@SiO₂ NCs with concentrations of 100 nM Hg²⁺ and 10 μ M GSH

Fig. S10. Fluorescent physical map of CsPbBr₃-mPEG@SiO₂+Hg²⁺ in the presence of GSH (50 μ M) and other small biological molecules (50 μ M), respectively.

Fig. S11. (A) Change in the fluorescence intensity of CsPbBr₃-mPEG@SiO₂+Hg²⁺ in the presence of GSH (50 μ M) with various coexisting small biological molecules (50 μ M). (B) Fluorescent physical map of CsPbBr₃-mPEG@SiO₂+Hg²⁺ in the presence of GSH (50 μ M) with various coexisting small biological molecules (50 μ M).

Table S1

Comparison	of different	methods	for	Hg ²⁺	detection

Fluorescent sensor	emission peak (nm)	linear range (nM)	LOD (nM)	Ref.
CH ₃ NH ₃ PbBr ₃ QDs	520	0-100	0.124	1
CDs-RhB	440	500-10000	25	2
N QDs	515	0-20000	0.63	3
N-Si QDs	440	100-4000	24	4
Carbon dots	450	0-15000	25	5
SiNPs/AuNCs nanohybrid	511	20-24000	5.6	6
CdS/ZnS core-shell QDs	475	2.5-280	2.2	7
Carbon dots	399	0-4000	250	8
N-S CDs	450	10-250	6.5	9
CsPbBr3-mPEG@SiO2 NCs	520	0.1-50	0.08	This work

Table S2

The detailed recombination lifetimes of CsPbBr₃-mPEG@SiO₂ NCs with various concentrations of Hg²⁺: (a) 0 nM, (b) 50 nM, (c) 100 nM, (d)the concentration of 100 nM Hg²⁺ and 10 μ M GSH

(b) so mai, (c) not mai, (d) the concentration of 100 mai rig and round obli							
Time	$\tau_1(ns)$	A_1	$\tau_2(ns)$	A_2	$\tau_3(ns)$	A ₃	$\tau_{ave}(ns)$
а	364.25	438.01	64.32	468.24	2535.10	90.18	1529.13
b	226.88	454.13	30.03	484.57	1787.62	75.29	929.55
c	49.76	1031.38	0.20	-80.91	518.85	94.67	252.54
d	62.34	449.11	410.94	441.04	2703.18	55.73	1651.06

Table S3

Fluorescent sensor	emission peak (nm)	linear range (µM)	LOD (µM)	Ref.
N-Si QDs	440	0.1-5	0.055	4
CDs-RhB	440	0-10	0.02	2
AuNCs	600	1.99-440	0.27	10
AuNCs@C ₃₀	445	0-0.1	0.018	11
BSA-AgNCs	598	10-80	1.2	12
AgNCs/NCDs	450/650	20-80	0.4	13
DNA-AgNCs	640	0.5-4.5	0.172	14
N-S-CD	446	0.1-2.0	0.0168	9
MnO ₂ -SiQD	464	13.3-417	0.153	15
CsPbBr ₃ -mPEG@SiO ₂ NCs	520	1-10	0.19	This work

Table S4

Analytical results for Hg²⁺ detection in tap water samples

Sample	Spiked (nM)	Found (nM)	Recovery (%)	RSD (%, n=3)
Tap water	10	9.97	99.70	1.3
	20	20.72	103.60	0.7
	40	39.73	99.33	1.1

Table S5

Analytical results for GSH detection in human serum samples

_			_		
	Sample	Spiked (µM)	Found (µM)	Recovery (%)	RSD (%, n=3)
	serum	0	2.92	0	0
		1	3.90	98.0	1.73
		2	4.99	103.5	3.14
		3	6.16	108.0	2.58

References

1 L. Q. Lu, T. Tan, X. K. Tian, Y. Li and P. Deng, Anal Chim Acta, 2017, 986, 109-114.

2 S. Lu, D. Wu, G. Li, Z. Lv, Z. Chen, L. Chen, G. Chen, L. Xia, J. You and Y. Wu, *RSC Advances*, 2016, **6**, 103169-103177.

3 Z. Wu, M. Feng, X. Chen and X. Tang, J Mater Chem B, 2016, 4, 2086-2089.

- 4 S. Shen, B. Huang, X. Guo and H. Wang, J Mater Chem B, 2019, 7, 7033-7041.
- 5 Y. Ma, Z. Zhang, Y. Xu, M. Ma, B. Chen, L. Wei and L. Xiao, Talanta, 2016, 161, 476-481.
- 6 F. Ru, P. Du and X. Lu, Anal Chim Acta, 2020, 1105, 139-146.
- 7 M. Koneswaran and R. Narayanaswamy, Microchimica Acta, 2012, 178, 171-178.
- 8 Z. Bai, F. Yan, J. Xu, J. Zhang, J. Wei, Y. Luo and L. Chen, *Spectrochim Acta A Mol Biomol Spectrosc*, 2018, **205**, 29-39.
- 9 S. Xu, Y. Liu, H. Yang, K. Zhao, J. Li and A. Deng, Anal Chim Acta, 2017, 964, 150-160.
- 10 Y. Zhang, H. Xu, Y. Chen, X. You, Y. Pu, W. Xu and X. Liao, J Fluoresc, 2020, 30, 1491-1498.
- 11 Z. Zhang, T. Liu, S. Wang, J. Ma, T. Zhou, F. Wang, X. Wang and G. Zhang, J. Photochem. Photobiol. A, 2019, 370, 89-93.
- 12 Z. Chen, D. Lu, Z. Cai, C. Dong and S. Shuang, Luminescence, 2014, 29, 722-727.
- 13 S. Zhang, B. Lin, Y. Yu, Y. Cao, M. Guo and L. Shui, Spectrochim Acta A Mol Biomol Spectrosc, 2018, 195, 230-235.
- 14 C. Li and C. Wei, Sens. Actuators B Chem, 2017, 240, 451-458.
- 15 H. Ma, X. Li, X. Liu, M. Deng, X. Wang, A. Iqbal, W. Liu and W. Qin, *Sens. Actuators B Chem*, 2018, **255**, 1687-1693.