Supporting information

Colorimetric monitoring of serum dopamine with promotion activity of gold nanoclusters-based nanozymes

Qian Ma a,b	, Juan Qiao	^{a,c} , Yufei Liu ^b	, Li Qi * ^{a,c}
-------------	-------------	---	---------------------------------

* Correspondence author:

qili@iccas.ac.cn

^a Beijing National Laboratory for Molecular Sciences; Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P.R. China

^b School of Pharmacy, Xinxiang Medical University, Xinxiang 453003, P. R. China

^c School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing 100049, P. R. China

Experiments

Materials and chemicals

Dopamine (DA) was supplied Alfa Aesar Chemicals Co. Ltd. (Shanghai, China). Papain was gotten from Sangon Biotech Co., Ltd. (Shanghai, China). HAuCl₄ was bought from Shenyang Jinke Reagent Factory (Shenyang, China). Sodium acetate (NaAc) was gotten from Beijing Yili Fine Chemicals Co., Ltd. (Beijing, China). Zinc sulfate (ZnSO₄) and magnesium chloride (MgCl₂) were obtained from Aladdin Chemistry Company (Shanghai, China). L-Amino acids (L-AAs) were purchased from TCI Shanghai Co. Ltd. (Shanghai, China). Hydrogen peroxide (H₂O₂, 30.0%, w/w), 3, 3', 5, 5'-tetramethylbenzidine (TMB), 5.5'-dimethyl pyrroline *N*-oxide (DMPO) and other chemicals were purchased from Beijing Innochem Technology Co. Ltd. (Beijing, China). The aqueous solutions were prepared with Milli-Q water (Millipore, Bedford, MA, USA).

Instruments

The ultraviolet-visible (UV-vis) absorption spectra were recorded using a TU-1900 UV-vis double-beam spectrometer (Purkinje General, China). A 1.0 mL capacity cuvette with a 1.0 cm path length was used for measuring the UV-vis absorbance.

The fluorescence measurements were performed using an F-4600 fluorescence spectrophotometer (Hitachi, Japan).

Fourier transform infrared (FT-IR) spectra were recorded by an FT-IR spectrophotometer (TENSOR-27, Germany).

The zeta potential measurements were carried out with a Zetasizer laser particle analyser (Zetasizer Nano ZS ZEN3600, British).

X-ray photoelectron spectroscopy (XPS) measurements were performed by an ESCALab220i-XL spectrometer (VG Scientific, U.K.).

Transmission electron microscopy (TEM) images were obtained using a transmission electron microscope (JEM-2010, Japan electron optics laboratory, Japan) at a voltage of 200 kV.

Electron paramagnetic resonance (EPR) signals were measured by a Bruker ESP 300E spectrometer (Bruker, Rheinstetten, Germany) with a microwave bridge (receiver gain, 1×105; modulation amplitude, 2 Gauss; microwave power, 10 mW; modulation frequency, 100 kHz). A sample containing 0.1 M DMPO was transferred to a quartz capillary tube and placed in the EPR cavity. Under the UV-irradiation at 355 nm, EPR signals were detected using DMPO as the spin trap.

Preparation of P@AuNCs

All of the glasswares were washed with aqua regia (HCI:HNO $_3$ volume ratio = 3:1) and rinsed with ultrapure water. The P@AuNCs was prepared with papain as the reducing and capping agent. Simply, in a 20.0 mL-glass flask, 2.5 mL of HAuCl $_4$ (10.0 mM) and 2.5 mL of papain (2.0 mM) aqueous solutions were added and mixed under gentle stirring at 100 °C for 10 min. The P@AuNCs solution was centrifuged to remove the larger particles at 10,000 rpm for 10 min. Finally, the P@AuNCs supernatant was collected and stored at 4 °C for further use.

DA testing

DA standard solutions (0.2-2.5 mM) were prepared. DA solution (30.0 μ L, 1.0 mM), P@AuNCs solution (150.0 μ L), TMB (36.0 μ L, 25.0 mM) and H₂O₂ (90.0 μ L, 10.0 M) was mixed with sodium acetate buffer solution (2.72 mL, 12.0 mM, pH 3.0). The mixture was incubated at 25 °C for 20 min before conducting the UV-*vis* absorption measurements.

Metabolic assay of DA in rat serum

Three male-Sprague-Dawley-rats (about 250 g) were gotten from Beijing Vital River Laboratory Animal Technology Co. Ltd. (Beijing, China).

The controlled blank serum samples and five different serum samples (at 0 h, 0.5 h, 1.0 h, 2.0 h, 4.0 h, 6.0) were collected after 7.6 mg/kg DA dissolved in physiological saline solution was injected into the abdominal cavity of rats. The rat serum samples were pre-treated to eliminate the interferences-proteins. Simply, 0.1 mL of the fresh rat serum samples was diluted by 0.1 mL of water, which was heated in a water-bath to boil for 20 min. Consequently, the samples were centrifuged at 10,000 rpm for 10 min and the supernatant was collected and stored at 4 °C for further analysis.

The proposed colorimetric P@AuNCs-TMB- H_2O_2 system was applied to determination of DA in the rat serum samples. 30.0 µL rat serums, P@AuNCs solution (150.0 µL), TMB (36.0 µL, 25.0 mM), H_2O_2 (90.0 µL, 10.0 M) and acetate buffer (2.72 mL, 12.0 mM, pH 3.0) were mixed. After the mixture was mixed and incubated at 25 °C for 10 min, the UV-vis absorption measurements were conducted.

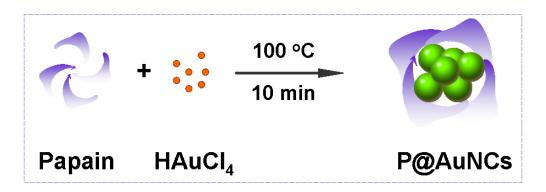
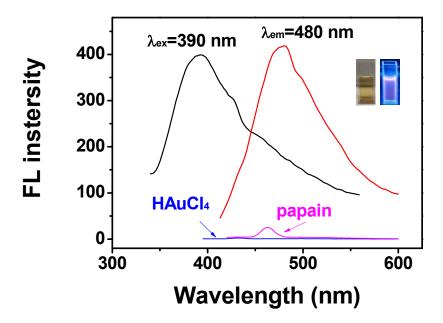
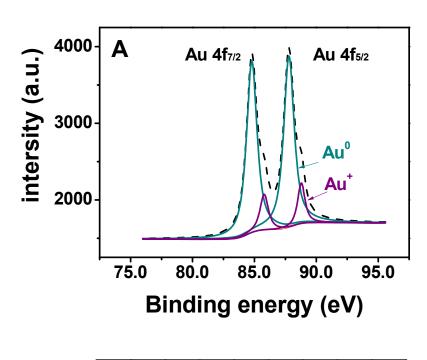
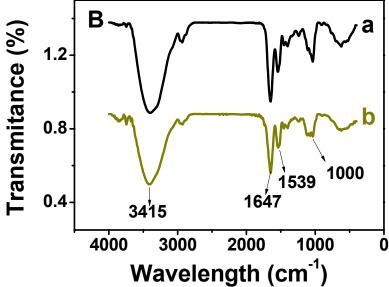





Fig. S1. Schematic diagram of the synthesis process of P@AuNCs.

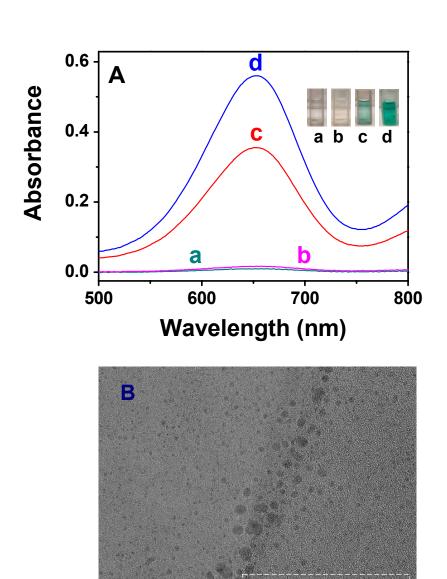
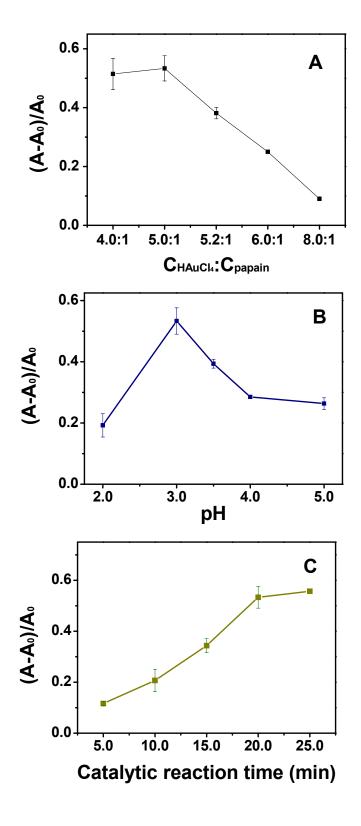


Fig. S2. The fluorescence spectra of the obtained P@AuNCs recorded with an emission wavelength at 480 nm under excitation at 390 nm. Inset: photograph of the P@AuNCs under visible light (left) and UV light (right).


Fig. S3. (A) XPS spectra of Au 4f orbitals of P@AuNCs; (B) FT-IR spectra of papain (a) and P@AuNC (b).

20 nm

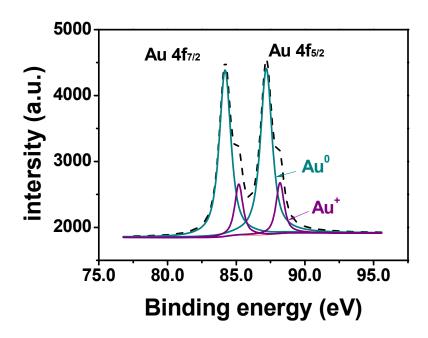
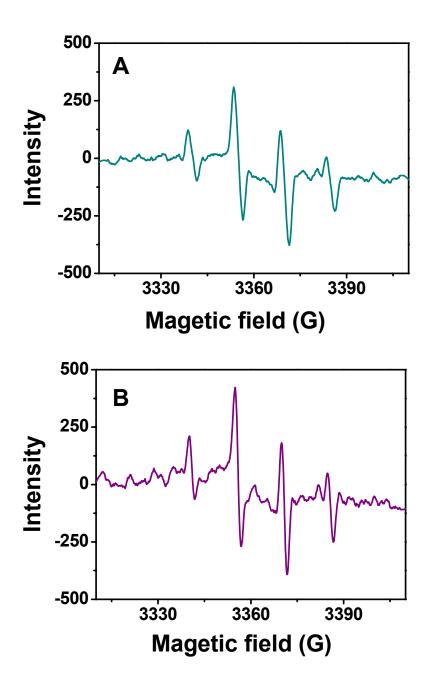
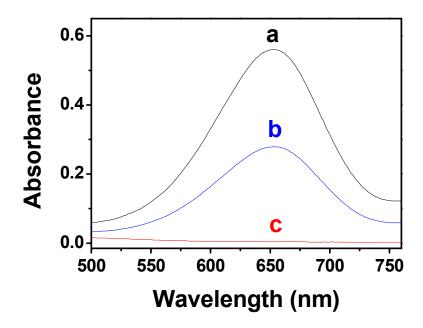
Fig. S4. (A) The UV-vis absorption spectra and photos of different systems: (a) TMB-H₂O₂; (b) DA-TMB-H₂O₂; (c) P@AuNC-TMB-H₂O₂; (d) P@AuNC-TMB-H₂O₂-DA. (B) TEM image and (C) size distribution of P@AuNCs-DA.

0

Fig. S5. Dependence of the peroxidase-like activity of P@AuNCs on (A) concentration ratio of $HAuCl_4$ to papain; (B) buffer pH and (C) catalytic reaction time.

Table S1. Kinetic parameters of the nanozymes with TMB as the substrate in the presence of H_2O_2

Catalyst	K _m (mM)	V _{max} (10 ⁻⁸ M·s ⁻¹)
P@AuNCs	0.41	0.99
P@AuNCs-DA	4.08	18.4

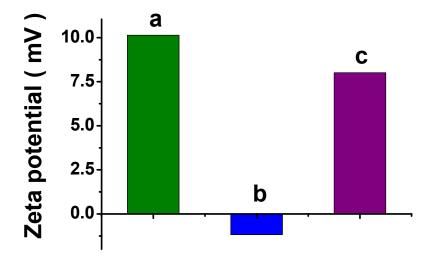

Fig. S6. XPS spectra of Au 4f orbitals of P@AuNCs-DA.

Fig. S7. EPR signals of (A) DMPO- H_2O_2 -P@AuNCs and (B) DMPO- H_2O_2 -P@AuNCs-DA. The concentrations of DMPO, P@AuNCs, H_2O_2 and DA were 0.1 M, 0.1 mM, 0.3 M and 25.0 μ M, respectively.

Fig. S8. Effect of ROS inhibitors on the P@AuNCs-TMB- H_2O_2 -DA absorbance in the absence (a) and presence of (b) 0.8 mM t-tubyl alcohol or (c) 0.4 mM benzoquinone.

Fig. S9. The apparent zeta potentials of (a) P@AuNCs; (b) DA and (c) P@AuNCs-DA, respectively.

Table S2. Comparison with the reported nanozymes for detection of DA

Nanozymes	Synthesis conditions	Catalytic activity	Linear range (µM)	Samples	References
CuFe₂O₄ @Cu₃S₃@PPy NTs	25 °C 12.0 h	decrease	2.0-20.0	DA solution	Z. Yang, et al. <i>Dalton Trans.</i> 2017, 46, 11171.
Co₃O₄ @NiO NTs	80 °C 1.0 h	decrease	1.0-20.0	DA solution	Y. Zhu, et al. <i>Talanta</i> 2018, 181, 431.
Ag₂S@CeO₂ NPs	25 °C 5.0 h	decrease	0.5-4.0	DA solution	J. Lian, et al. <i>Colloid. Surf. A</i> 2019, 565, 1.
Pt@hBNNS NPs	80 °C 20.0 h	decrease	2.0-50.0	human serum	M.N. Ivanova, et al. ACS Appl. Mater. Interfaces 2019, 11, 22102.
Pt@CoFe₂O₄ NPs	60 °C 6.0 h	decrease	20.0-80.0	human serum	F. He, et al. <i>Microchem. J.</i> 2020, 158, 105264.
ZIF-67@Co₃O₄ HNCs	25 °C 24.0 h	decrease	4.8-90.0	human serum	H. Wang, et al. Spectrochim. Acta A 2021, 246, 119006
P@AuNCs	100 °C 0.17 h	increase	2.0-25.0	rat serum	This work

Table S3. Recovery of the proposed method*

Serums	Added (µM)	Found (µM)	Recovery (%)	RSD (%)
1	5.0	4.8	97.7	0.5
	10.0	9.9	99.0	3.0
	20.0	19.3	96.8	3.2
2	5.0	5.4	108.0	0.9
	10.0	10.8	107.9	3.3
	20.0	19.3	96.5	3.0
3	5.0	5.1	102.0	1.6
	10.0	10.0	100.2	1.7
	20.0	19.0	95.1	1.5

^{*} Blank controlled rat serums were used for recovery study (n=3).