## Characterization of Ovarian Cancer-Derived Extracellular Vesicles by Surface-Enhanced Raman Spectroscopy – Supplementary Information

Nina M. Ćulum,<sup>1</sup> Tyler T. Cooper, <sup>2</sup> Gillles A. Lajoie,<sup>2</sup> Thamara Dayarathna,<sup>3</sup> Stephen H.

Pasternak,<sup>3</sup> Jiahui Liu,<sup>4</sup> Yangxin Fu,<sup>4</sup> Lynne-Marie Postovit,<sup>4,5</sup> François Lagugné-Labarthet<sup>\*1</sup>

<sup>1</sup> University of Western Ontario (Western University), Department of Chemistry, 1151 Richmond St., London, Ontario, Canada, N6A 5B7

<sup>2</sup> University of Western Ontario (Western University), Department of Biochemistry, 1151 Richmond St., London, Ontario, Canada, N6A 5B7

<sup>3</sup> University of Western Ontario (Western University), Robarts Research Institute, 1151 Richmond St., London, Ontario, Canada, N6A 5B7

<sup>4</sup> University of Alberta, Department of Oncology, 116 St. & 85 Ave., Edmonton, Alberta,

Canada, T6G 2R3

<sup>5</sup> Queen's University, Department of Biomedical & Molecular Sciences, 99 University Ave.,

Kingston, Ontario, Canada, K7L 3N6

| Parameter                               | Parameter Setting                 |
|-----------------------------------------|-----------------------------------|
| Orbitrap Resolution (MS1)               | $7 \times 10^4$                   |
| Mass Range                              | 400 - 1500  m/z                   |
| MS1 Injection Time                      | 200 ms                            |
| MS1 Automatic Gain Control (AGC) Target | $3 \times 10^{6}$ ions/cycle      |
| Lock Mass                               | 445.120025 m/z                    |
| MS2 Detection                           | Fourier Transform                 |
| MS2 Resolution                          | $1.75 \times 10^4$                |
| MS2 AGC Target                          | $2 \times 10^5$ ions/cycle        |
| MS2 Injection Time                      | 50 ms                             |
| Loop Count                              | 12                                |
| Isolation Width                         | 1.2 m/z                           |
| Isolation Offset                        | 0.5 m/z                           |
| MS2 Activation                          | Higher-energy C-trap dissociation |
| Normalized Collision Energy             | 25 %                              |
| Dynamic Exclusion                       | 12                                |
| Minimum AGC Target                      | $2 \times 10^3$ ions/cycle        |
| MS2 Intensity Threshold                 | $8 \times 10^4$                   |
| Exclusion Duration                      | 30 s                              |
| Charge Exclusion                        | Unassigned, 1, 8, >8              |
| Polarity                                | Positive                          |
|                                         |                                   |

Table S1. Parameters for Q Exactive Plus.



**Figure S1.** Representative flow cytometry plots (top) and corresponding size distributions (bottoms) of EV samples from OV-90 (left) and hIOSE (middle) cell lines, as well as conditioned media (right).



**Figure S2. (A)** Number of MS1 and MS2 scans for duplicate injections of each EV sample. **(B)** Number of peptides identified by de novo sequencing, which led to confident protein identification with false discovery rate (p < 0.01).



**Figure S3.** SEM images of typical nanohole arrays (edge length =  $1.0 \ \mu m$ ) used for EV capture and analysis, including (A) triangular arrays and (B) square arrays (scale bars =  $10 \ \mu m$ ). (C) and (D) represent magnified images of (A) and (B), respectively (scale bars =  $5 \ \mu m$ ).

| Raman Shift (cm <sup>-1</sup> ) | Presumed Assignment                                                    | Ref. Peak (cm <sup>-1</sup> ) |
|---------------------------------|------------------------------------------------------------------------|-------------------------------|
| 630                             | Glycerol                                                               | 630 <sup>1,2</sup>            |
| 692                             | Ring deformation                                                       | 686 <sup>2</sup>              |
| 724                             | Ring breathing mode of adenine                                         | 725 <sup>1,2</sup>            |
| 755                             | Symmetric breathing of tryptophan                                      | 755 <sup>2</sup>              |
| 787                             | Ring breathing mode of cytosine, uracil, thymine                       | 786 <sup>1,2</sup>            |
| 818                             | C-C stretching in collagen                                             | 817 <sup>1,2</sup>            |
| 837                             | Deformative vibrations of amine groups                                 | 8381,2                        |
| 865                             | C-C stretching or C-O-C skeletal mode in                               | 868 <sup>1,2</sup>            |
|                                 | carbohydrates                                                          |                               |
| 935                             | C-C stretching mode of proline, valine, and                            | 935 <sup>1,2</sup>            |
|                                 | protein backbone (α-helix); glycogen                                   |                               |
| 961                             | Unassigned in protein assignments                                      | 963 <sup>1,2</sup>            |
| 1029                            | Phenylalanine of collagen                                              | 1030 <sup>2</sup>             |
| 1090                            | Symmetric phosphate stretching vibrations                              | 1090 <sup>1,2</sup>           |
| 1185                            | Cytosine, guanine, adenine                                             | $1180 - 1184^{1,2}$           |
| 1254                            | Lipids                                                                 | 1255 <sup>1,2</sup>           |
| 1303                            | CH <sub>2</sub> /CH <sub>3</sub> twisting, wagging, or bending mode of | 1302 <sup>1,2</sup>           |
|                                 | lipid/collagen; amide III                                              |                               |
| 1356                            | Guanine                                                                | 1355, 1357 <sup>1,2</sup>     |
| 1404                            | C-H deformation                                                        | 14041                         |
| 1455                            | Deoxyribose; CH <sub>2</sub> scissoring of proteins and lipids         | 1455 <sup>2</sup>             |
| 1482                            | Ring breathing mode of guanine, adenine                                | 1485 <sup>1,2</sup>           |
| 1545                            | Amide II                                                               | 1544 <sup>1</sup>             |

**Table S2.** Summary of peak assignments of hIOSE EVs, as highlighted in Fig. 3A.

| Raman Shift (cm <sup>-1</sup> ) | Presumed Assignment                                                                               | Ref. Peak (cm <sup>-1</sup> ) |
|---------------------------------|---------------------------------------------------------------------------------------------------|-------------------------------|
| 632                             | Glycerol                                                                                          | 630 <sup>1,2</sup> *          |
| 675                             | Ring breathing mode in guanine                                                                    | 678 <sup>1,2</sup>            |
| 714                             | C-N (membrane phospholipid head); adenine                                                         | 717 <sup>2</sup>              |
| 719                             | C-N (membrane phospholipid head), symmetric                                                       | 719 <sup>1,2</sup>            |
|                                 | stretch vibration of choline group N <sup>+</sup> (CH <sub>3</sub> ) <sub>3</sub> ;<br>nucleotide |                               |
| 755                             | Symmetric breathing of tryptophan                                                                 | 755 <sup>2</sup> *            |
| 782                             | Ring breathing in thymine, cytosine, uracil                                                       | 782 <sup>1,2</sup>            |
| 822                             | Phosphodiester                                                                                    | 822 <sup>1,2</sup>            |
| 908                             | Tyrosine                                                                                          | <b>906</b> <sup>1</sup>       |
| 943                             | Skeletal modes in polysaccharides                                                                 | 941 <sup>1,2</sup>            |
| 1008                            | Phenylalanine                                                                                     | 1008 <sup>1,2</sup>           |
| 1036                            | C-H in-plane bending mode of phenylalanine                                                        | 1036 <sup>2</sup>             |
| 1118                            | Glucose                                                                                           | 1117 <sup>1,2</sup>           |
| 1151                            | C-N stretching in proteins                                                                        | 1152 <sup>1,2</sup>           |
| 1186                            | Cytosine, guanine, adenine                                                                        | $1180 - 1184^{1,2}$ *         |
| 1201                            | Nucleic acids and phosphates; aromatic C-O and                                                    | 1200 <sup>1,2</sup>           |
|                                 | C-N                                                                                               |                               |
| 1220                            | C=N=C stretching                                                                                  | 1220 <sup>1,2</sup>           |
| 1274                            | Amide III                                                                                         | 1275 <sup>1,2</sup>           |
| 1335                            | CH <sub>2</sub> /CH <sub>3</sub> twisting and wagging in collagen and                             | 1335 <sup>1,2</sup>           |
|                                 | nucleic acids; C-N stretching in amide III                                                        |                               |
| 1370                            | Saccharide band                                                                                   | 1370 <sup>1,2</sup>           |
| 1403                            | C-H deformation                                                                                   | 14041 *                       |
| 1467                            | Lipids                                                                                            | 1465 <sup>1,2</sup>           |
| 1533                            | Amide II                                                                                          | 1542 <sup>1</sup>             |

Table S3. Summary of peak assignments of OV-90 EVs, as highlighted in Fig. 3B.

| Raman Shift (cm <sup>-1</sup> ) | Presumed Assignment                                                  | Ref. Peak (cm <sup>-1</sup> ) |
|---------------------------------|----------------------------------------------------------------------|-------------------------------|
| 675                             | Ring breathing mode in guanine                                       | 678 <sup>1,2</sup>            |
| 687                             | Ring deformation                                                     | 686 <sup>2</sup> *            |
| 724                             | Ring breathing mode of adenine                                       | 725 <sup>1,2</sup> *          |
| 741                             | DNA, tryptophan                                                      | 7421                          |
| 818                             | C-C stretching in collagen                                           | 817 <sup>1,2</sup> *          |
| 848                             | C-O-C skeletal mode in carbohydrates                                 | 847 <sup>1,2</sup>            |
| 929                             | Carbohydrates                                                        | 931 <sup>1,2</sup>            |
| 935                             | C-C stretching mode of proline, valine, and                          | 935 <sup>1,2</sup> *          |
|                                 | protein backbone (α-helix); glycogen                                 |                               |
| 956                             | CH <sub>3</sub> stretching in proteins ( $\alpha$ -helix)            | 951 <sup>1,2</sup>            |
| 994                             | C-O ribose, C-C                                                      | <b>996</b> <sup>1,2</sup>     |
| 1055                            | C-O stretching, C-N stretching in proteins                           | 1053 <sup>1,2</sup>           |
| 1176                            | C-H bending in tyrosine                                              | 1176 <sup>1</sup>             |
| 1197                            | Tryptophan ring breathing                                            | 1199 <sup>1</sup>             |
| 1226                            | Amide III (β-sheet)                                                  | 1224 <sup>1,2</sup>           |
| 1299                            | Acyl chains, fatty acids                                             | 1298 <sup>1,2</sup>           |
| 1324                            | CH <sub>2</sub> /CH <sub>3</sub> wagging mode in collagen and purine | 1324 <sup>1,2</sup>           |
|                                 | bases                                                                |                               |
| 1346                            | Adenine and guanine; C-H deformation of                              | 1344 <sup>2</sup>             |
|                                 | proteins                                                             |                               |
| 1376                            | Ring breathing mode of adenine                                       | 1376 <sup>2</sup>             |
| 1455                            | Deoxyribose; CH <sub>2</sub> scissoring of proteins and lipids       | 1455 <sup>2</sup> *           |
| 1483                            | Ring breathing mode of guanine, adenine                              | 1485 <sup>1,2</sup> *         |
| 1529                            | -C=C- in-plane vibrations                                            | 1525 <sup>1,2</sup>           |
| 1584                            | C=C bending mode of phenylalanine                                    | 1583 <sup>1,2</sup>           |

Table S4. Summary of peak assignments of OVCAR3 EVs, as highlighted in Fig. 3B.

| Raman Shift (cm <sup>-1</sup> ) | Presumed Assignment                                                  | Ref. Peak (cm <sup>-1</sup> ) |
|---------------------------------|----------------------------------------------------------------------|-------------------------------|
| 639                             | Tyrosine ring breathing                                              | 639 <sup>1</sup>              |
| 694                             | Ring deformation                                                     | 686 <sup>2</sup> *            |
| 736                             | Phosphatidylserine                                                   | 733 <sup>1,2</sup>            |
| 775                             | Phosphatidylinositol                                                 | 776 <sup>1,2</sup>            |
| 797                             | Ring breathing mode in uracil                                        | 802 <sup>1,2</sup>            |
| 845                             | C-O-C skeletal mode in carbohydrates                                 | 847 <sup>1,2</sup>            |
| 886                             | Ring deformation and symmetric C-N-C                                 | 886 <sup>2</sup>              |
|                                 | stretching                                                           |                               |
| 939                             | C-C skeletal stretching in proteins                                  | 939 <sup>2</sup>              |
| 1003                            | C-C skeletal mode, phenylalanine                                     | 1003 <sup>1,2</sup>           |
| 1023                            | Glycogen                                                             | 1023 <sup>1,2</sup>           |
| 1096                            | Phosphodioxy group (PO <sub>2</sub> <sup>-</sup> in nucleic acids)   | 1096 <sup>1,2</sup>           |
| 1159                            | C-C/C-N stretching in proteins                                       | 1158 <sup>1</sup>             |
| 1162                            | Tyrosine                                                             | 1163 <sup>1</sup>             |
| 1225                            | Amide III (β-sheet)                                                  | 1224 <sup>1,2</sup>           |
| 1265                            | Amide III of collagen; C-C <sub>6</sub> H <sub>5</sub> stretching in | 1265 <sup>2</sup>             |
|                                 | phenylalanine                                                        |                               |
| 1332                            | C-C stretching in phenyls, C-O stretching, C-H in-                   | 1332 <sup>1,2</sup>           |
|                                 | plane bending                                                        |                               |
| 1367                            | CH <sub>3</sub> stretching in phospholipids                          | 1367 <sup>1,2</sup>           |
| 1404                            | C-H deformation                                                      | 1404 <sup>1</sup> *           |
| 1439                            | CH <sub>2</sub> /CH <sub>3</sub> deformation in collagen             | 1439 <sup>1,2</sup>           |
| 1520                            | -C=C- in-plane vibrations                                            | 1525 <sup>1,2</sup>           |
| 1558                            | Tryptophan, tyrosine, amide II                                       | 1558 <sup>1,2</sup>           |

Table S5. Summary of peak assignments of EOC6 EVs, as highlighted in Fig. 3C.

| Raman Shift (cm <sup>-1</sup> ) | Presumed Assignment                                                 | Ref. Peak (cm <sup>-1</sup> ) |
|---------------------------------|---------------------------------------------------------------------|-------------------------------|
| 612                             | Cholesterol ester                                                   | 614 <sup>1,2</sup>            |
| 648                             | Ring, cyclic deformation                                            | 649 <sup>2</sup>              |
| 677                             | Ring breathing in guanine                                           | 678 <sup>1,2</sup>            |
| 756                             | Symmetric breathing of tryptophan                                   | 755 <sup>2</sup> *            |
| 835                             | Deformative vibrations of amine groups                              | 8381,2*                       |
| 852                             | Proline, hydroxyproline, tyrosine                                   | 852 <sup>1,2</sup>            |
| 935                             | C-C stretching mode of proline, valine, and                         | 935 <sup>1,2</sup> *          |
|                                 | protein backbone (α-helix); glycogen                                |                               |
| 987                             | Phenylalanine                                                       | <b>991</b> <sup>1</sup>       |
| 1032                            | CH <sub>2</sub> /CH <sub>3</sub> bending modes of phenylalanine and | 10321,2                       |
|                                 | proline of collagen, phospholipids                                  |                               |
| 1076                            | Symmetric stretching of PO <sub>4</sub> <sup>3-</sup>               | 1076 <sup>1</sup>             |
| 1166                            | Lipids                                                              | 1168 <sup>1,2</sup>           |
| 1209                            | C-C <sub>6</sub> H <sub>5</sub> stretching mode in tryptophan and   | 1209 <sup>1,2</sup>           |
|                                 | phenylalanine                                                       |                               |
| 1248                            | Amide III                                                           | 1248 <sup>1</sup>             |
| 1262                            | Ring breathing mode in thymine, adenine; =C-H                       | 1263 <sup>1,2</sup>           |
|                                 | bending in proteins                                                 |                               |
| 1300                            | CH <sub>2</sub> twisting in lipids, fatty acids                     | 1300 <sup>1,2</sup>           |
| 1338                            | Amide III                                                           | 1338 <sup>2</sup>             |
| 1362                            | Tryptophan                                                          | 1360 <sup>1,2</sup>           |
| 1386                            | CH <sub>3</sub> band                                                | 1386 <sup>1,2</sup>           |
| 1425                            | Deoxyribose                                                         | 1424 <sup>1,2</sup>           |
| 1466                            | Lipids                                                              | 1465 <sup>1,2</sup>           |
| 1473                            | C=N stretching                                                      | 1470 <sup>1,2</sup>           |
| 1577                            | Guanine, adenine                                                    | 1578 <sup>1</sup>             |

Table S6. Summary of peak assignments of EOC18 EVs, as highlighted in Fig. 3C.



**Figure S4.** ROC curves comparing six different machine learning algorithms: support vector machine (SVM), logistic regression, random forest, kNN, Naïve Bayes, and CN2 rule inducer. The upper left-most portion is zoomed in and highlighted in red (right).

**Table S7.** Comparison of accuracies, sensitivities, and specificities achieved with the six learning machine algorithms shown in Fig. S3. Although SVM has a slightly higher AUC (0.999) than logistic regression (0.997), logistic regression is able to classify each EV type with higher accuracy, precision, and recall.

| Model               | Accuracy | Precision | Recall |  |
|---------------------|----------|-----------|--------|--|
| Logistic Regression | 98.6 %   | 98.6 %    | 98.6 % |  |
| SVM                 | 97.3 %   | 97.4 %    | 97.3 % |  |
| Random Forest       | 91.0 %   | 91.1 %    | 91.0 % |  |
| Naïve Bayes         | 86.5 %   | 88.4 %    | 86.5 % |  |
| kNN                 | 86.5 %   | 87.1 %    | 86.5 % |  |
| CN2 Rule Inducer    | 77.4 %   | 77.4 %    | 77.4 % |  |



**Figure S5.** Score plots containing (A) first two PCs (i.e., a traditional score plot), (B) PC2 and PC3 (informative projection for the first 5 PCs), (C) PC6 and PC9 (informative projection for both the first 10 and 15 PCs), and (D) PC6 and PC18 (informative projection for the first 20 PCs).

| Number of PCs Retained | <b>Total Explained Variance</b> | Accuracy | Precision | Recall |
|------------------------|---------------------------------|----------|-----------|--------|
| 5                      | 91.5 %                          | 46.3 %   | 50.6 %    | 46.3 % |
| 10                     | 94.0 %                          | 69.0 %   | 69.6 %    | 69.0 % |
| 15                     | 95.5 %                          | 69.0 %   | 69.6 %    | 69.0 % |
| 20                     | 96.5 %                          | 94.6 %   | 94.8 %    | 94.6 % |
| 25                     | 97.2 %                          | 98.6 %   | 98.6 %    | 98.6 % |

**Table S8.** A comparison of the descriptive statistics when varying amounts of PCs are retained

 for machine learning.

Table S9. Confusion matrix generated when the first 5 PCs are retained for machine learning.

|     |        | Predicted                     |    |    |    |     |
|-----|--------|-------------------------------|----|----|----|-----|
|     |        | EOC6 EOC18 OV-90 OVCAR3 hIOSE |    |    |    |     |
|     | EOC6   | 70                            | 12 | 2  | 16 | 57  |
| al  | EOC18  | 13                            | 48 | 9  | 6  | 60  |
| ctu | OV-90  | 2                             | 3  | 45 | 0  | 50  |
| A   | OVCAR3 | 12                            | 0  | 4  | 38 | 44  |
|     | hIOSE  | 21                            | 22 | 8  | 30 | 119 |

Table S10. Confusion matrix generated when the first 15 PCs are retained for machine learning.

|     |        | Predicted                     |    |    |    |     |  |
|-----|--------|-------------------------------|----|----|----|-----|--|
|     |        | EOC6 EOC18 OV-90 OVCAR3 hIOSE |    |    |    |     |  |
| al  | EOC6   | 133                           | 3  | 4  | 4  | 13  |  |
|     | EOC18  | 4                             | 79 | 4  | 6  | 43  |  |
| ctu | OV-90  | 1                             | 3  | 74 | 4  | 18  |  |
| Ā   | OVCAR3 | 5                             | 2  | 12 | 58 | 21  |  |
|     | hIOSE  | 20                            | 18 | 12 | 17 | 133 |  |

|     |        | Predicted                     |     |    |    |     |
|-----|--------|-------------------------------|-----|----|----|-----|
|     |        | EOC6 EOC18 OV-90 OVCAR3 hIOSE |     |    |    |     |
|     | EOC6   | 144                           | 7   | 5  | 1  | 0   |
| al  | EOC18  | 4                             | 127 | 2  | 1  | 2   |
| ctu | OV-90  | 4                             | 1   | 95 | 0  | 0   |
| V   | OVCAR3 | 0                             | 6   | 0  | 92 | 0   |
|     | hIOSE  | 1                             | 3   | 0  | 0  | 196 |

Table S11. Confusion matrix generated when the first 20 PCs are retained for machine learning.

Table S12. Confusion matrix generated when the first 25 PCs are retained for machine learning.

|     |        | Predicted                     |     |    |    |     |  |
|-----|--------|-------------------------------|-----|----|----|-----|--|
|     |        | EOC6 EOC18 OV-90 OVCAR3 hIOSE |     |    |    |     |  |
| al  | EOC6   | 153                           | 1   | 0  | 1  | 2   |  |
|     | EOC18  | 0                             | 134 | 1  | 1  | 0   |  |
| ctu | OV-90  | 0                             | 0   | 99 | 0  | 1   |  |
| A   | OVCAR3 | 0                             | 1   | 0  | 97 | 0   |  |
|     | hIOSE  | 1                             | 1   | 0  | 0  | 198 |  |

## References

1. A. C. S. Talari, Z. Movasaghi, S. Rehman and I. U. Rehman, Appl. Spectrosc. Rev. 2015, 50,

46-111.

2. I. U. Rehman, Z. Movasaghi, S. Rehman, in Vibrational Spectroscopy for Tissue Analysis,

CRC Press, Boca Raton, 2012, vol. 1, pp 213-294.