Paper microfluidics device based colorimetric sensor for the detection and discrimination of elapid versus viper envenomation

Lakshmi Narashimhan Ramana^{1*}, Santosh S Mathapati², Nitin Salvi³, M.V. Khadilkar³, Anita Malhotra⁴, Vishal Santra^{5,6} and Tarun Kumar Sharma^{1*}

¹Aptamer Technology and Diagnostics Laboratory, Multidisciplinary Clinical and Translational Research Group, Translational Health Science and Technology Institute (THSTI), Faridabad, Haryana 121001, India

²Multidisciplinary Clinical and Translational Research Group, , Translational Health Science and Technology Institute (THSTI), Faridabad, Haryana 121001, India

³Premium Serums and Vaccines Pvt. Ltd, Maharashtra, 410504, India.

⁴ School of Natural sciences, College of Environment sciences and Engineering, Bangor University, Bangor LL57 2UW, UK

⁵ Society for Nature Conservation, Research and Community Engagement (CONCERN), Nalikul, Hooghly, 712407, West Bengal, India

⁶Captive and Field Herpetology, 13 Hirfron, Anglesey, LL65 1YU, Wales, UK.

*Corresponding authors: Lakshmi Narashimhan Ramana and Tarun Kumar Sharma Email: lnramana@thsti.res.in, <u>tarun@thsti.res.in</u>

Supplementary information

Table ST1

S. No.	Methodology of detection	Viper species	Range of detection	Detection time (in min)	References
1	Enzyme-linked Immunosorbent assay (ELISA)	Saw- scaled viper	5 ng ml ⁻¹	240	1
2	Enzyme-linked Immunosorbent assay (Fluorescence-based)	Russell's viper	0.1 pg ml ⁻¹	240	2
3	Enzyme-linked Immunosorbent assay	Russell's viper	2.4 ng ml ⁻¹	300	3
4	Enzyme-linked Immunosorbent assay (ELISA)	Russell's viper Saw- scaled viper	0.1 ng ml ⁻¹	25	4
5	Radioimmunoassay (RIA)	Russell's viper	0.1 ng ml ⁻¹	1440	5
6	Radioimmunoassay (RIA)	Russell's viper	4 ng ml ⁻¹	60	6
7	Antibody based LFA (Later flow assay)	Russell's viper	5 ng ml ⁻¹	10	7
8	Immunochromatographic strip Gold nanoparticles – Antibody Later flow assay	Russell's viper	10 ng ml ⁻¹	25	8
9	Paper microfluidics immobilised with gelatin nanoparticles	All viper species	3.125 ng for RVV 6.25 ng for SSV	25	This work

Table ST1: Detection of viper's venom using various technique (in the presence of buffer and spiked sera

LOD and LOQ calculation

LOD is the point at which the corresponding lower concentration absorbance is more that can be reliably detected

For Buffer	Mean of control + 3 X S.D. of control		
	Mean of control: 0.045		
	S.D of control: 0.001		
	LOD: 0.045 + 3 X 0.001		
LOD: 0.0480			
For Serum	Mean of control + 3 X S.D. of control		
	Mean of control: 0.057		
	S.D of control: 0.00529		
	LOD: 0.057 + 3 X 0.00529		

LOD: 0.0728

Hence, the lowest amount of venom, whose absorbance is more than 0.0728 can be considered as LOD

LOQ is point of concentration that can be measured with a defined precision and accuracy

For Buffer	<u>r Buffer</u> Mean of control + 10 X S.D. of control			
	Mean of control: 0.045			
	S.D of control: 0.001			
	LOD: 0.045 + 10 X 0.001			
LOD: 0.055				
For Serum	Mean of control + 10 X S.D. of control			
	Mean of control: 0.057			
	S.D of control: 0.00529			
	LOD: 0.057 + 10 X 0.00529			

LOD: 0.1099

Hence, the lowest amount of venom, whose absorbance is more than 0.1099 can be considered as LOQ

Table ST2

Table ST2. Spiked recovery test for detection of protease activity of viper venom in humanserum (1 to 6 for Russell's viper and 7 to 13 for Saw-scaled viper)

Si.no	Amount of venom (ng)	Recovery (%)	Average Recovery (%)	
	Russell's viper			
1	200	86	-	
2	100	87	-	
3	50	80	89.4	
4	25	76	-	
5	12.5	83		
6	6.25	122		
	Saw-scaled viper		-	
7	200	92	-	
8	100	81	89.5	
9	50	90	-	
10	25	89	-	
11	12.5	103	-	
12	6.25	76	-	
13	3.125	91		

Figure S1: Detection of Russell's viper venom using paper microfluidics incubated with various amount of venom (3.125, 6.25, 12.5, 25, 50, 100, 200 ng) in the presence of buffer and spiked sera

Note: First two images labelled Buffer and Serum refers to control buffer and unspiked serum respectively.

Figure S2

Figure S2: Detection of Saw-scaled viper venom using paper microfluidics incubated with various amount of venom (3.125, 6.25, 12.5, 25, 50, 100, 200 ng) in the presence of buffer and spiked sera

Note: First two images labelled Buffer and Serum refers to control buffer and unspiked serum respectively.

Figure S3: Low-end detection limit of gelatinase activity determined using paper microfluidics (red circles illustrate colour change (blue) at detection zone). First panel represent sensor response in buffer and second one in venom spiked human serum.

Figure S5: Linear range plot of colour intensity in paper microfluidics measured using ImageJ program with different amount of viper venom (Russell's viper, Saw-scaled viper) in buffer and spiked serum

Figure S4: Stability of paper microfluidics incubated with the presence of unspiked serum (no venom added) at various time points

Figure S6

Figure S6: Detection of different Russell's viper venom from geographically distinct regions, based on dye release from GMG nanoparticles due to gelatinase activity of proteases **A**) ELISA **B**) paper microfluidics

Figure S7: Detection of stability of GMG nanoparticles in presence of enzymes and amino acids mainly urease, human phospholipase A2, malate synthase and casaminoacids both quantitatively ((A) ELISA) and qualitatively ((B) paper microfluidics)

References:

 Theakston, R. D. G.; Jane Lloyd-Jones, M.; Reid, H. A., MICRO-ELISA FOR Detecting and assaying snake venom and venom-antibody. *The Lancet* 1977, *310* (8039), 639-641.

2. Bhatti, A. R.; Wong, J. P.; Siddiqui, Y. M.; Siddiqui, S., A sensitive fluorogenic enzyme linked immunosorbent assay for the detection of *Vipera russelli* venom. *Natural Toxins* **1993**, *1* (5), 277-282.

3. Tan, C. H.; Tan, N. H.; Sim, S. M.; Fung, S. Y.; Gnanathasan, C. A., Immunological properties of *Hypnale hypnale* (hump-nosed pit viper) venom: Antibody production with diagnostic and therapeutic potentials. *Acta Tropica* **2012**, *122* (3), 267-275.

4. Gao, J.-F.; Wang, J.; Qu, Y.-F.; Ma, X.-M.; Ji, X., Immunoreactivity between venoms and commercial antiserums in four Chinese snakes and venom identification by species-specific antibody. *Journal of Immunological Methods* **2013**, *387* (1), 211-218.

5. Coulter, A. R.; Fox, J. C.; Sutherland, S. K.; Waddell, C. J., A new solid-phase sandwich radioimmunoassay and its application to the detection of snake venom. *Journal of Immunological Methods* **1978**, *23* (3), 241-252.

6. Pukrittayakamee, S.; Ratcliffe, P. J.; McMichael, A. J.; Warrell, D. A.; Bunnag, D., A competitive radioimmunoassay using a monoclonal antibody to detect the factor X activator of Russell's viper venom. *Toxicon* **1987**, *25* (7), 721-729.

Pawade, B. S.; Salvi, N. C.; Shaikh, I. K.; Waghmare, A. B.; Jadhav, N. D.; Wagh, V. B.; Pawade, A. S.; Waykar, I. G.; Potnis-Lele, M., Rapid and selective detection of experimental snake envenomation – Use of gold nanoparticle based lateral flow assay. *Toxicon* 2016, *119*, 299-306.

Lin, J.-H.; Lo, C.-M.; Chuang, S.-H.; Chiang, C.-H.; Wang, S.-D.; Lin, T.-Y.; Liao, J.-W.; Hung, D.-Z., Collocation of avian and mammal antibodies to develop a rapid and sensitive

diagnostic tool for Russell's Vipers Snakebite. *PLOS Neglected Tropical Diseases* 2020, 14 (9), e0008701.