Surface-enhanced Raman scattering (SERS) spectroscopy on localized silver nanoparticles decorated porous silicon substrate

Chia-Wen Tsao1,*, You-Shan Zheng1, Ya-Sen Sun2, and Yu-Che Cheng3,4,5

1Department of Mechanical Engineering, National Central University, Taoyuan 32001, Taiwan
2Department of Chemical and Materials Engineering, National Central University, Taoyuan 32001, Taiwan
3Proteomics Laboratory, Department of Medical Research, Cathay General Hospital, Taipei 10630, Taiwan
4School of Medicine, Fu-Jen Catholic University, New Taipei City 242062, Taiwan
5Department of Biomedical Sciences and Engineering, National Central University, Taoyuan 32001, Taiwan

*Corresponding author.

E-mail: cwtsao@ncu.edu.tw

Tel: +886-3-4267343

Fax: +886-3-4254501
Figure S1. Image binarization of porous silicon (PS) FE-SEM images

Figure S2. (a) Schematic illustration and fluorescent image of the coffee-ring shape and uniform analyte distribution after sample (R6G) drying. (b) three (boundary, transition, and central) distribution regions and their corresponding SERS spectrum of 10 µL, 10^{-5}M R6G sample. The 2x2 cm² Ag-PS surface is generated by 5 mins MACE.
(a) Hydrophobic coating (Ultra-Ever Dry)

Figure S3. Schematic illustration of using (a) hydrophobic coating and (b) Teflon film to constatin the droplet from spreading on a hydrophilic Ag-PS surface and SER spectrum. The hydrophobic coating process starts with first attaching an 800 μm radius shadow mask on the PS surface. We then coat with a bottom adhesive layer followed by a top hydrophobic layer. For Teflon film, we use needle tip punching the Teflon film generating ~600 μm radius opening. Then attach to the PS surface.

(b) Teflon hydrophobic film

Figure S4. x1.8k (left) and x10k FE-SEM images showing partial deposition of silver nanoparticles in the transition region on porous silicon surface.
Figure S5. Photograph images of sample (water) droplets deposit on the LocAg-PS pad on (a) 5 mins (b) 10 mins and (c) 15 mins PS base substrates with 1µL and 2µL Ag-Drop deposition condition.