Supporting Information

Immediate and Sensitive Detection of Sporulated *Bacillus subtilis* by Microwave Release and Tandem Mass Spectrometry of Dipicolinic Acid

L. Edwin Gonzalez⁺, Lucas J. Szalwinski⁺, Brett M. Marsh⁺, Mitchell J. Wells⁺, R. Graham Cooks⁺ ⁺Department of Chemistry, Purdue University, West Lafayette, Indiana 47907, United States ⁺Teledyne FLIR Systems Inc., West Lafayette, Indiana, 47905, United States

Table of Contents

Figure S1	.3
Figure S2	.4
Figure S3	.5
Figure S4	.6
Figure S5	.7
Figure S6	.8
Figure S7	.9
Figure S8	.10
Figure S9	.11
Figure S10	.12

Figure S1. Scheme describing the experiment in which spores are lysed for 1 min with 1.1 kW of microwave irradiation and subsequently analyzed by nESI-MS in the negative ion mode.

Figure S2. Bar graph of absolute intensity (arbitrary units) of the product ion m/z 122 generated by MS/MS of m/z 166 from the supernatant of irradiated *Bacillus subtilis* spores.

Figure S3. Mass spectrum of supernatant after irradiation of 2.2×10^8 *Bacillus subtilis* spores, recorded in the negative ion mode. The inset shows mass range m/z 100 - 200.

Figure S4. Mass spectrum of microwaved supernatant of *Bacillus subtilis* (5.0x10⁸ spores) in the negative ion mode acquired using nESI-MS.

Figure S5. Mass spectrum of the lipid region of microwaved (Blue line) vegetative ($5.0x10^8$ bacteria) and (Red line) sporulated ($2.2x10^8$ spores) *Bacillus subtilis* in the negative ion mode. The mass range shown includes the lipid region between m/z 650-m/z 750. The yellow boxed peaks denote lipids that are unique to vegetative cells.

Figure S6. MS/MS spectra of A) PG(31:0), B) PG(30:0), C) PG(29:0), and D) PG(32:0) with collision energies of 25, 25, 25, and 26, respectively. Insets next to each spectrum show plausible isobaric lipid species, however in the case of PG(30:0)-PG(15:0/15:0), an alternative isobaric lipid species is not plausible since both the lipid tails for PG(15:0/15:0) are saturated. All MS/MS spectra of the lipids of interest were acquired using 2.2×10^8 spores with nESI-MS in the negative ion mode.

Figure S7. MS/MS spectra of A) PG (30:0) and B) PG (29:0) in the negative ion mode. Spectra on the left side are from microwaved vegetative bacteria (5.0x10⁸ cells) and spectra of spores (2.2x10⁸ spores) are on the right. Proposed structures of the lipids are shown underneath each set of spectra.

Figure S8. MS/MS spectra of A) PG (31:0) and B) PG (32:0) in the negative ion mode. Spectra on the left side are from microwaved vegetative bacteria (5.0x10⁸ cells) and spectra of spores (2.2x10⁸ spores) are on the right. Proposed structures of the lipids are shown underneath each set of spectra. Spectra were acquired in triplicate and averaged.

Figure S9. A) Mass spectrum of microwaved *B subtilis* spores (2.2×10^6 spores) and B) MS/MS spectrum of *m*/*z* 166, the molecular ion for DPA, in the negative ion mode using nESI-MS. Inset in figure A shows the *m*/*z* range of *m*/*z* 151.5 – 170. All replicate samples were microwaved in for 1 min. Background peaks are labeled with asterisk.

Figure S10. Ratio of ion intensity of m/z 122 generated by fragmentation of m/z 166 comparing the blank to the signal for 10⁸ spores. The data for this experiment was acquired using paper spray ionization in the negative ion mode.